https://img87.pixhost.to/images/599/359020115_tuto.jpg


download скачать Free download скачать : Pluralsight - Machine Learning Literacy
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:1.66 GB

Files Included :

1  Course Overview.mp4 (4.54 MB)
MP4
1  Overview.mp4 (1.92 MB)
MP4
2  What to Expect.mp4 (1.47 MB)
MP4
3  On Machine Learning.mp4 (5.87 MB)
MP4
4  What Is Different About Machine Learning.mp4 (4.03 MB)
MP4
5  Learning Types.mp4 (11.29 MB)
MP4
6  Machine Learning Pipeline.mp4 (9.47 MB)
MP4
7  Problem Definition.mp4 (4.73 MB)
MP4
8  Introducing Google Collaboratory.mp4 (8.3 MB)
MP4
9  Summary.mp4 (1.2 MB)
MP4
1  Overview.mp4 (1.45 MB)
MP4
2  Revisiting ML Pipeline.mp4 (1.5 MB)
MP4
3  Understanding Data Sourcing.mp4 (8.29 MB)
MP4
4  CSV Format.mp4 (1.93 MB)
MP4
5  Understanding SciPy.mp4 (6.54 MB)
MP4
6  Demo - Loading Data into Pandas.mp4 (8.88 MB)
MP4
7  Summary.mp4 (1.12 MB)
MP4
01  Overview.mp4 (1.4 MB)
MP4
02  Revisiting ML Pipeline.mp4 (2.14 MB)
MP4
03  Introducing Data Analysis.mp4 (5.5 MB)
MP4
04  Univariant Numerical Analysis.mp4 (12.54 MB)
MP4
05  Bivariant Numerical Analysis.mp4 (7.93 MB)
MP4
06  Demo - Descriptive Stats - Part One.mp4 (14.14 MB)
MP4
07  Demo - Descriptive Stats - Part Two.mp4 (10.01 MB)
MP4
08  Data Visualization.mp4 (10.63 MB)
MP4
09  Demo - Data Visualization - Part One.mp4 (11.67 MB)
MP4
10  Demo - Data Visualization - Part Two.mp4 (10.4 MB)
MP4
11  Summary.mp4 (1021.43 KB)
MP4
01  Overview.mp4 (1.88 MB)
MP4
02  Revisting ML Pipeline.mp4 (2.81 MB)
MP4
03  Data Scaling - The Problem.mp4 (11.24 MB)
MP4
04  Data Scaling - The Solution.mp4 (4.32 MB)
MP4
05  The Need for Data Segregation.mp4 (5.94 MB)
MP4
06  Train Test Split.mp4 (5.05 MB)
MP4
07  KFlod Cross Validation.mp4 (5.25 MB)
MP4
08  Welcoming scikit-learn.mp4 (3.67 MB)
MP4
09  Demo - Data Segregation Techniques.mp4 (8.48 MB)
MP4
10  Summary.mp4 (1.71 MB)
MP4
01  Overview.mp4 (1.5 MB)
MP4
02  Revisiting ML Pipeline.mp4 (1.72 MB)
MP4
03  Scoping Your Focus.mp4 (9.7 MB)
MP4
04  Introducing Derivatives.mp4 (6.81 MB)
MP4
05  Linear Regression.mp4 (5.49 MB)
MP4
06  Variance Bias Tradeoff.mp4 (8.58 MB)
MP4
07  Other Regression Algorithms.mp4 (3.19 MB)
MP4
08  Model Evaluation.mp4 (4.32 MB)
MP4
09  Demo - Deploying and Testing the Model - Part 1.mp4 (18.61 MB)
MP4
10  Demo - Deploying and Testing the Model - Part 2.mp4 (15.76 MB)
MP4
11  Summary.mp4 (2.87 MB)
MP4
1  Overview.mp4 (1.74 MB)
MP4
2  Handling Features.mp4 (2.95 MB)
MP4
3  Model Improvement.mp4 (2.14 MB)
MP4
4  Automated ML.mp4 (6.45 MB)
MP4
5  Operationalization.mp4 (2.63 MB)
MP4
6  Team Data Science Process.mp4 (4.21 MB)
MP4
7  Summary.mp4 (3.74 MB)
MP4
1  Course Overview.mp4 (3.23 MB)
MP4
01  Version Check.mp4 (552.03 KB)
MP4
02  Module Overview.mp4 (1.93 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.27 MB)
MP4
04  The Need for Data Preparation.mp4 (6.1 MB)
MP4
05  Insufficient Data.mp4 (10.02 MB)
MP4
06  Too Much Data.mp4 (6.35 MB)
MP4
07  Non-representative Data, Missing Values, Outliers, Duplicates.mp4 (3.55 MB)
MP4
08  Dealing with Missing Data.mp4 (7.56 MB)
MP4
09  Dealing with Outliers.mp4 (8.17 MB)
MP4
10  Oversampling and Undersampling to Balance Datasets.mp4 (7.13 MB)
MP4
11  Overfitting and Underfitting.mp4 (4.24 MB)
MP4
12  Module Summary.mp4 (2.14 MB)
MP4
01  Module Overview.mp4 (1.83 MB)
MP4
02  Handling Missing Values.mp4 (12.87 MB)
MP4
03  Cleaning Data.mp4 (15.02 MB)
MP4
04  Visualizing Relationships.mp4 (8.4 MB)
MP4
05  Building a Regression Model.mp4 (14.85 MB)
MP4
06  Univariate Feature Imputation Using the Simple Imputer.mp4 (14.99 MB)
MP4
07  Multivariate Feature Imputation Using the Iterative Imputer.mp4 (12.14 MB)
MP4
08  Missing Value Indicator.mp4 (3.97 MB)
MP4
09  Feature Imputation as a Part of an Machine Learning Pipeline.mp4 (7.85 MB)
MP4
10  Module Summary.mp4 (2.06 MB)
MP4
01  Module Overview.mp4 (3.97 MB)
MP4
02  Numeric Data.mp4 (8.04 MB)
MP4
03  Scaling and Standardizing Features.mp4 (9.3 MB)
MP4
04  Normalizing and Binarizing Features.mp4 (12.24 MB)
MP4
05  Categorical Data.mp4 (4.89 MB)
MP4
06  Numeric Encoding of Categorical Data.mp4 (7.27 MB)
MP4
07  Label Encoding and One-hot Encoding.mp4 (15.24 MB)
MP4
08  Discretization of Continuous Values Using Pandas Cut.mp4 (6.48 MB)
MP4
09  Discretization of Continuous Values Using the KBins Discretizer.mp4 (7.42 MB)
MP4
10  Building a Regression Model with Discretized Data.mp4 (6.72 MB)
MP4
11  Module Summary.mp4 (1.88 MB)
MP4
1  Module Overview.mp4 (1.82 MB)
MP4
2  The Curse of Dimensionality.mp4 (7.77 MB)
MP4
3  Reducing Complexity in Data.mp4 (4.73 MB)
MP4
4  Feature Selection to Reduce Dimensions.mp4 (5.56 MB)
MP4
5  Filter Methods.mp4 (6.39 MB)
MP4
6  Embedded Methods.mp4 (7.64 MB)
MP4
7  Module Summary.mp4 (2.04 MB)
MP4
1  Module Overview.mp4 (1.84 MB)
MP4
2  Feature Correlations.mp4 (17.28 MB)
MP4
3  Using the Correlation Matrix to Detect Multi-collinearity.mp4 (10.35 MB)
MP4
4  Using Variance Inflation Factor to Detect Multi-collinearity.mp4 (6.57 MB)
MP4
5  Features Selection Using Missing Values Threshold and Variance Threshold.mp4 (13.08 MB)
MP4
6  Univariate Feature Selection Using Chi2 and ANOVA.mp4 (14.09 MB)
MP4
7  Feature Selection Using Wrapper Methods.mp4 (16.17 MB)
MP4
8  Feature Selection Using Embedded Methods.mp4 (7.74 MB)
MP4
9  Module Summary.mp4 (1.98 MB)
MP4
1  Course Overview.mp4 (3.22 MB)
MP4
01  Module Overview.mp4 (1.9 MB)
MP4
02  Prerequisites and Course Outline.mp4 (2.53 MB)
MP4
03  A Case Study - Sentiment Analysis.mp4 (10.11 MB)
MP4
04  Sentiment Analysis as a Binary Classification Problem.mp4 (3.59 MB)
MP4
05  Rule Based vs  ML Based Analysis.mp4 (9.98 MB)
MP4
06  Traditional Machine Learning Systems.mp4 (6.82 MB)
MP4
07  Representation Machine Learning Systems.mp4 (3.76 MB)
MP4
08  Deep Learning and Neural Networks.mp4 (8.48 MB)
MP4
09  Traditional ML vs  Deep Learning.mp4 (4.91 MB)
MP4
10  Traditional ML Algorithms and Neural Network Design.mp4 (6.68 MB)
MP4
11  Module Summary.mp4 (2.1 MB)
MP4
1  Module Overview.mp4 (1.95 MB)
MP4
2  Choosing the Right Machine Learning Problem.mp4 (9.91 MB)
MP4
3  Supervised and Unsupervised Learning.mp4 (13.05 MB)
MP4
4  Reinforcement Learning.mp4 (10.86 MB)
MP4
5  Recommendation Systems.mp4 (6.7 MB)
MP4
6  Module Summary.mp4 (2.17 MB)
MP4
01  Module Overview.mp4 (2.89 MB)
MP4
02  Regression Models.mp4 (3.44 MB)
MP4
03  Choosing Regression Algorithms.mp4 (6.62 MB)
MP4
04  Evaluating Regression Models.mp4 (8.08 MB)
MP4
05  Types of Classification.mp4 (6.02 MB)
MP4
06  Choosing Classification Algorithms.mp4 (4.72 MB)
MP4
07  Evaluating Classifiers.mp4 (6.41 MB)
MP4
08  Clustering Models.mp4 (8.96 MB)
MP4
09  The Curse of Dimensionality.mp4 (8.58 MB)
MP4
10  Dimensionality Reduction Techniques.mp4 (4.21 MB)
MP4
11  Module Summary.mp4 (1.81 MB)
MP4
01  Module Overview.mp4 (1.99 MB)
MP4
02  Install and Set Up.mp4 (3.57 MB)
MP4
03  Exploring the Regression Dataset.mp4 (5.81 MB)
MP4
04  Simple Regression Using Analytical and Machine Learning Techniques.mp4 (10.61 MB)
MP4
05  Multiple Regression Using Analytical and Machine Learning Techniques.mp4 (4.73 MB)
MP4
06  Exploring the Classification Dataset.mp4 (7.77 MB)
MP4
07  Classification Using Logistic Regression.mp4 (10.48 MB)
MP4
08  Classification Using Decision Trees.mp4 (6.8 MB)
MP4
09  Clustering Using K-means.mp4 (15.06 MB)
MP4
10  Dimensionality Reduction Using Principal Component Analysis.mp4 (9.28 MB)
MP4
11  Dimensionality Reduction Using Manifold Learning.mp4 (13.19 MB)
MP4
12  Module Summary.mp4 (2.1 MB)
MP4
1  Module Overview.mp4 (1.77 MB)
MP4
2  The Machine Learning Workflow.mp4 (6.75 MB)
MP4
3  Case Study - PyTorch on the Cloud.mp4 (8.32 MB)
MP4
4  Ensemble Learning.mp4 (10.05 MB)
MP4
5  Averaging and Boosting, Voting and Stacking.mp4 (3.68 MB)
MP4
6  Custom Neural Networks - Their Characteristics and Applications.mp4 (5.83 MB)
MP4
7  Module Summary.mp4 (1.98 MB)
MP4
1  Module Overview.mp4 (1.71 MB)
MP4
2  Classification Using Hard Voting and Soft Voting.mp4 (11.33 MB)
MP4
3  Exploring and Preprocessing the Regression Dataset.mp4 (6.4 MB)
MP4
4  Regression Using Bagging and Pasting.mp4 (9.81 MB)
MP4
5  Regression Using Gradient Boosting.mp4 (9.02 MB)
MP4
6  Regression Using Neural Networks.mp4 (14.34 MB)
MP4
7  Summary and Further Study.mp4 (2.57 MB)
MP4
1  Course Overview.mp4 (3.96 MB)
MP4
01  Module Overview.mp4 (2.08 MB)
MP4
02  Prerequisites and Course Outline.mp4 (1.67 MB)
MP4
03  Rule-based vs  ML-based Learning.mp4 (11.32 MB)
MP4
04  Traditional ML vs  Representation ML.mp4 (5.86 MB)
MP4
05  The Machine Learning Workflow.mp4 (5.06 MB)
MP4
06  Choosing the Right Model Based on Data.mp4 (8.73 MB)
MP4
07  Supervised vs  Unsupervised Learning.mp4 (7.76 MB)
MP4
08  Transfer Learning, Cold Start ML and Warm Start ML.mp4 (8.4 MB)
MP4
09  Popular Machine Learning Frameworks.mp4 (5.44 MB)
MP4
10  Demo - Getting Started with scikit-learn.mp4 (3.72 MB)
MP4
11  Module Summary.mp4 (2.23 MB)
MP4
01  Module Overview.mp4 (1.99 MB)
MP4
02  Building and Evaluating Regression Models.mp4 (7.8 MB)
MP4
03  Demo - Linear Regression Using Numeric Features.mp4 (15.19 MB)
MP4
04  Demo - Exploring Regression Data.mp4 (8.37 MB)
MP4
05  Demo - Preprocessing Numeric and Categorical Data and Fitting a Regression Model.mp4 (8.95 MB)
MP4
06  Choosing Regression Algorithms.mp4 (4.31 MB)
MP4
07  Regularized Regression Models - Lasso, Ridge, and Elastic Net.mp4 (6.09 MB)
MP4
08  Stochastic Gradient Descent.mp4 (3.6 MB)
MP4
09  Demo - Multiple Types of Regression.mp4 (10.48 MB)
MP4
10  Module Summary.mp4 (2.18 MB)
MP4
01  Module Overview.mp4 (1.89 MB)
MP4
02  Types of Classifiers.mp4 (6.6 MB)
MP4
03  Understanding Logistic Regression Intuitively.mp4 (8.38 MB)
MP4
04  Demo - Building and Training a Binary Classification Model.mp4 (11.85 MB)
MP4
05  Understanding Support Vector and Nearest Neighbors Classification.mp4 (6.34 MB)
MP4
06  Understanding Decision Tree and Naive Bayes Classification.mp4 (8.29 MB)
MP4
07  Demo - Building Classification Models Using Multiple Techniques.mp4 (13.24 MB)
MP4
08  Demo - Using Warm Start with an Ensemble Classifier.mp4 (5.69 MB)
MP4
09  Demo - Performing Multiclass Classification on Text Data.mp4 (12.84 MB)
MP4
10  Module Summary.mp4 (1.66 MB)
MP4
01  Module Overview.mp4 (1.85 MB)
MP4
02  Clustering as an Unsupervised Learning Technique.mp4 (6.53 MB)
MP4
03  Choosing Clustering Algorithms.mp4 (6.27 MB)
MP4
04  Categorizing Clustering Algorithms.mp4 (4.81 MB)
MP4
05  K-means Clustering.mp4 (4.19 MB)
MP4
06  Hierarchical Clustering.mp4 (5.72 MB)
MP4
07  Demo - Performing K-means Clustering on Unlabeled Data.mp4 (10.19 MB)
MP4
08  Demo - Clustering Using Labeled Data.mp4 (15.61 MB)
MP4
09  Demo - Agglomerative Clustering.mp4 (18.2 MB)
MP4
10  Summary and Further Study.mp4 (2.1 MB)
MP4
1  Course Overview.mp4 (3.28 MB)
MP4
2  Version Check.mp4 (550.5 KB)
MP4
01  Module Overview.mp4 (2.32 MB)
MP4
02  Prerequisites and Course Outline.mp4 (1.83 MB)
MP4
03  The Classic Machine Learning Workflow.mp4 (5.1 MB)
MP4
04  New Realities of Deployed Models.mp4 (10.38 MB)
MP4
05  Overfitting.mp4 (6.6 MB)
MP4
06  Training-serving Skew.mp4 (9.56 MB)
MP4
07  Concept Drift.mp4 (9.44 MB)
MP4
08  Concerted Adversaries.mp4 (3.66 MB)
MP4
09  Deploying Machine Learning Models.mp4 (3.74 MB)
MP4
10  Module Summary.mp4 (2.25 MB)
MP4
01  Module Overview.mp4 (1.77 MB)
MP4
02  Serializing Model Parameters.mp4 (5.04 MB)
MP4
03  Demo - Serializing and Deserializing Models Using JSON.mp4 (15.96 MB)
MP4
04  Demo - Using Pickle and Joblib to Serialize and Deserialize Models.mp4 (10.57 MB)
MP4
05  Demo - Checkpointing Models and Resuming Training from a Checkpoint.mp4 (11.91 MB)
MP4
06  Demo - Serializing Pre-processors and Models.mp4 (11.36 MB)
MP4
07  Demo - Serializing Pipelines.mp4 (4.03 MB)
MP4
08  Using Flask for Model Deployment.mp4 (3.19 MB)
MP4
09  Demo - Deploying a Model for Prediction Using Flask.mp4 (13.1 MB)
MP4
10  Module Summary.mp4 (1.93 MB)
MP4
1  Module Overview.mp4 (2.14 MB)
MP4
2  Event-driven Serverless Compute.mp4 (7.53 MB)
MP4
3  Demo - Serializing Classification Models.mp4 (8.03 MB)
MP4
4  Demo - Uploading Pickle Files to Cloud Storage.mp4 (11.28 MB)
MP4
5  Demo - Deploying a Model to Google Cloud Functions.mp4 (13.53 MB)
MP4
6  Demo - Performing Predictions Using Cloud Functions.mp4 (9.46 MB)
MP4
7  Module Summary.mp4 (1.86 MB)
MP4
01  Module Overview.mp4 (2.01 MB)
MP4
02  Introducing the Google AI Platform.mp4 (9.79 MB)
MP4
03  Demo - Getting Started with Cloud AI Platform.mp4 (7.13 MB)
MP4
04  Demo - Creating a Model and a Version.mp4 (10.4 MB)
MP4
05  Demo - Scheduling an Evaluation Job to Sample Prediction Instances.mp4 (12.34 MB)
MP4
06  Demo - Testing the Deployed Model Using the Web Console.mp4 (6 MB)
MP4
07  Demo - Model Predictions Using the gcloud Command Line Utility.mp4 (6.16 MB)
MP4
08  Demo - Invoking the Predictions API Using cURL.mp4 (10.67 MB)
MP4
09  Demo - Monitoring Deployed Models Using Stackdriver.mp4 (18.04 MB)
MP4
10  Module Summary.mp4 (2.05 MB)
MP4
01  Module Overview.mp4 (2.17 MB)
MP4
02  Introducing Amazon SageMaker.mp4 (3.68 MB)
MP4
03  Training a Model on SageMaker.mp4 (4.31 MB)
MP4
04  Deploying a Model on SageMaker.mp4 (5.65 MB)
MP4
05  Demo - Creating a SageMaker Notebook Instance.mp4 (14.59 MB)
MP4
06  Demo - Getting Started with SageMaker for Distributed Training.mp4 (5.81 MB)
MP4
07  Demo - Tensor Flow Script for Distributed Training.mp4 (15.59 MB)
MP4
08  Demo - Distributed Training Using the SageMaker Tensor Flow Estimator.mp4 (17.27 MB)
MP4
09  Demo - Deploying the Model for Predictions.mp4 (14.75 MB)
MP4
10  Demo - Auditing and Compliance Using Cloud Trail.mp4 (10.15 MB)
MP4
11  Summary and Further Study.mp4 (2.53 MB)
MP4

https://thumbs2.imgbox.com/af/03/UKDuIEHV_t.jpg

https://img87.pixhost.to/images/1010/363506399_rg.png

Код:
 https://rapidgator.net/file/aceff9af281e4abd9eec25a143a3922b/Pluralsight_-_Machine_Learning_Literacy.z01
https://rapidgator.net/file/4532dfd2ef212a0343d4fafc6da7bf00/Pluralsight_-_Machine_Learning_Literacy.zip

https://img88.pixhost.to/images/1104/374887060_banner_240-32.png

Код:
 https://ddownload.com/kvul29x5corx/Pluralsight_-_Machine_Learning_Literacy.z01
https://ddownload.com/bc3mp4xfmomr/Pluralsight_-_Machine_Learning_Literacy.zip

https://img87.pixhost.to/images/1103/364146951_nitroflare.jpg

Код:
 https://nitroflare.com/view/9D19C5508F87C92/Pluralsight_-_Machine_Learning_Literacy.z01
https://nitroflare.com/view/87CA71B526AC226/Pluralsight_-_Machine_Learning_Literacy.zip