https://img87.pixhost.to/images/599/359020115_tuto.jpg


download скачать Free download скачать : Oreilly - Grokking Machine Learning, video edition
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:2.13 GB

Files Included :

001  Chapter 1  What is machine learning It is common sense, except done by a computer.mp4 (33.69 MB)
MP4
002  Chapter 1  What is machine learning.mp4 (24.3 MB)
MP4
003  Chapter 1  Some examples of models that humans use.mp4 (16.29 MB)
MP4
004  Chapter 1  Example 4 More.mp4 (13.1 MB)
MP4
005  Chapter 2  Types of machine learning.mp4 (21.11 MB)
MP4
006  Chapter 2  Supervised learning The branch of machine learning that works with labeled data.mp4 (30.28 MB)
MP4
007  Chapter 2  Unsupervised learning The branch of machine learning that works with unlabeled data.mp4 (22.15 MB)
MP4
008  Chapter 2  Dimensionality reduction simplifies data without losing too much information.mp4 (23.26 MB)
MP4
009  Chapter 2  What is reinforcement learning.mp4 (17.35 MB)
MP4
010  Chapter 3  Drawing a line close to our points Linear regression.mp4 (19.14 MB)
MP4
011  Chapter 3  The remember step Looking at the prices of existing houses.mp4 (24.57 MB)
MP4
012  Chapter 3  Some questions that arise and some quick answers.mp4 (18.2 MB)
MP4
013  Chapter 3  Crash course on slope and y-intercept.mp4 (22.39 MB)
MP4
014  Chapter 3  Simple trick.mp4 (22.07 MB)
MP4
015  Chapter 3  The linear regression algorithm Repeating the absolute or square trick many times to move the line closer to the points.mp4 (20.14 MB)
MP4
016  Chapter 3  How do we measure our results The error function.mp4 (21.21 MB)
MP4
017  Chapter 3  Gradient descent How to decrease an error function by slowly descending from a mountain.mp4 (28.53 MB)
MP4
018  Chapter 3  Real-life application Using Turi Create to predict housing prices in India.mp4 (23.28 MB)
MP4
019  Chapter 3  Parameters and hyperparameters.mp4 (21.53 MB)
MP4
020  Chapter 4  Optimizing the training process Underfitting, overfitting, testing, and regularization.mp4 (34.94 MB)
MP4
021  Chapter 4  How do we get the computer to pick the right model By testing.mp4 (30.4 MB)
MP4
022  Chapter 4  A numerical way to decide how complex our model should be The model complexity graph.mp4 (27.39 MB)
MP4
023  Chapter 4  Another example of overfitting Movie recommendations.mp4 (23.19 MB)
MP4
024  Chapter 4  Modifying the error function to solve our problem Lasso regression and ridge regression.mp4 (25.37 MB)
MP4
025  Chapter 4  An intuitive way to see regularization.mp4 (13.54 MB)
MP4
026  Chapter 4  Polynomial regression, testing, and regularization with Turi Create.mp4 (15.92 MB)
MP4
027  Chapter 4  Polynomial regression, testing, and regularization with Turi Create The testing RMSE for the models follow.mp4 (20.12 MB)
MP4
028  Chapter 5  Using lines to split our points The perceptron algorithm.mp4 (31.39 MB)
MP4
029  Chapter 5  The problem We are on an alien planet, and we don't know their language!.mp4 (25.01 MB)
MP4
030  Chapter 5  Sentiment analysis classifier.mp4 (22.01 MB)
MP4
031  Chapter 5  The step function and activation functions A condensed way to get predictions.mp4 (21.6 MB)
MP4
032  Chapter 5  The bias, the y-intercept, and the inherent mood of a quiet alien.mp4 (26.38 MB)
MP4
033  Chapter 5  Error function 3 Score.mp4 (19.47 MB)
MP4
034  Chapter 5  Pseudocode for the perceptron trick (geometric).mp4 (22.03 MB)
MP4
035  Chapter 5  Bad classifier.mp4 (22.35 MB)
MP4
036  Chapter 5  Pseudocode for the perceptron algorithm.mp4 (29.39 MB)
MP4
037  Chapter 5  Coding the perceptron algorithm using Turi Create.mp4 (26.92 MB)
MP4
038  Chapter 6  A continuous approach to splitting points Logistic classifiers.mp4 (30.87 MB)
MP4
039  Chapter 6  The dataset and the predictions.mp4 (16.21 MB)
MP4
040  Chapter 6  Error function 3 log loss.mp4 (25.2 MB)
MP4
041  Chapter 6  Formula for the log loss.mp4 (30.55 MB)
MP4
042  Chapter 6  Pseudocode for the logistic trick.mp4 (19.5 MB)
MP4
043  Chapter 6  Coding the logistic regression algorithm.mp4 (21.57 MB)
MP4
044  Chapter 6  Classifying into multiple classes The softmax function.mp4 (22.94 MB)
MP4
045  Chapter 7  How do you measure classification models Accuracy and its friends.mp4 (26.06 MB)
MP4
047  Chapter 7  Recall Among the positive examples, how many did we correctly classify.mp4 (28.31 MB)
MP4
048  Chapter 7  Combining recall and precision as a way to optimize both The F-score.mp4 (26.53 MB)
MP4
049  Chapter 7  A useful tool to evaluate our model The receiver operating characteristic (ROC) curve.mp4 (16.34 MB)
MP4
050  Chapter 7  The receiver operating characteristic (ROC) curve A way to optimize sensitivity and specificity in a model.mp4 (20.25 MB)
MP4
051  Chapter 7  A metric that tells us how good our model is The AUC (area under the curve).mp4 (20.18 MB)
MP4
052  Chapter 7  Recall is sensitivity, but precision and specificity are different.mp4 (14.65 MB)
MP4
053  Chapter 7  Summary.mp4 (18.67 MB)
MP4
054  Chapter 8  Using probability to its maximum The naive Bayes model.mp4 (21.93 MB)
MP4
055  Chapter 8  Sick or healthy A story with Bayes' theorem as the hero Let's calculate this probability.mp4 (16.97 MB)
MP4
056  Chapter 8  Prelude to Bayes' theorem The prior, the event, and the posterior.mp4 (22.7 MB)
MP4
057  Chapter 8  What the math just happened Turning ratios into probabilities.mp4 (19.53 MB)
MP4
058  Chapter 8  What the math just happened Turning ratios into probabilitiesProduct rule of probabilities.mp4 (8.47 MB)
MP4
059  Chapter 8  What about two words The naive Bayes algorithm.mp4 (32.54 MB)
MP4
060  Chapter 8  What about more than two words.mp4 (12.73 MB)
MP4
061  Chapter 8  Implementing the naive Bayes algorithm.mp4 (16.52 MB)
MP4
062  Chapter 9  Splitting data by asking questions Decision trees.mp4 (22.41 MB)
MP4
063  Chapter 9  Picking a good first question.mp4 (27.36 MB)
MP4
064  Chapter 9  The solution Building an app-recommendation system.mp4 (16.07 MB)
MP4
065  Chapter 9  Gini impurity index How diverse is my dataset.mp4 (14.18 MB)
MP4
066  Chapter 9  Entropy Another measure of diversity with strong applications in information theory.mp4 (20.82 MB)
MP4
067  Chapter 9  Classes of different sizes No problem We can take weighted averages.mp4 (26.38 MB)
MP4
068  Chapter 9  Beyond questions like yesno.mp4 (17.87 MB)
MP4
069  Chapter 9  The graphical boundary of decision trees.mp4 (17.93 MB)
MP4
070  Chapter 9  Setting hyperparameters in Scikit-Learn.mp4 (29.43 MB)
MP4
071  Chapter 9  Applications.mp4 (17.57 MB)
MP4
072  Chapter 10  Combining building blocks to gain more power Neural networks.mp4 (25.95 MB)
MP4
073  Chapter 10  Why two lines Is happiness not linear.mp4 (24 MB)
MP4
074  Chapter 10  The boundary of a neural network.mp4 (26.12 MB)
MP4
075  Chapter 10  Potential problems From overfitting to vanishing gradients.mp4 (27.65 MB)
MP4
076  Chapter 10  Neural networks with more than one output The softmax function.mp4 (21.24 MB)
MP4
077  Chapter 10  Training the model.mp4 (22.22 MB)
MP4
078  Chapter 10  Other architectures for more complex datasets.mp4 (20.16 MB)
MP4
079  Chapter 10  How neural networks paint paintings Generative adversarial networks (GAN).mp4 (24.66 MB)
MP4
080  Chapter 11  Finding boundaries with style Support vector machines and the kernel method.mp4 (24.86 MB)
MP4
081  Chapter 11  Distance error function Trying to separate our two lines as far apart as possible.mp4 (21.68 MB)
MP4
082  Chapter 11  Training SVMs with nonlinear boundaries The kernel method.mp4 (23.62 MB)
MP4
083  Chapter 11  Going beyond quadratic equations The polynomial kernel.mp4 (27.9 MB)
MP4
084  Chapter 11  A measure of how close points are Similarity.mp4 (23.49 MB)
MP4
085  Chapter 11  Overfitting and underfitting with the RBF kernel The gamma parameter.mp4 (22.23 MB)
MP4
086  Chapter 12  Combining models to maximize results Ensemble learning.mp4 (26.51 MB)
MP4
087  Chapter 12  Fitting a random forest manually.mp4 (21.17 MB)
MP4
088  Chapter 12  Combining the weak learners into a strong learner.mp4 (21.33 MB)
MP4
089  Chapter 12  Gradient boosting Using decision trees to build strong learners.mp4 (22.65 MB)
MP4
090  Chapter 12  XGBoost similarity score A new and effective way to measure similarity in a set.mp4 (15.3 MB)
MP4
091  Chapter 12  Building the weak learners Split at 25.mp4 (13.32 MB)
MP4
092  Chapter 12  Tree pruning A way to reduce overfitting by simplifying the weak learners.mp4 (24.39 MB)
MP4
093  Chapter 13  Putting it all in practice A real-life example of data engineering and machine learning.mp4 (29.3 MB)
MP4
094  Chapter 13  Using Pandas to study our dataset.mp4 (21.04 MB)
MP4
095  Chapter 13  Turning categorical data into numerical data One-hot encoding.mp4 (29.01 MB)
MP4
096  Chapter 13  Feature selection Getting rid of unnecessary features.mp4 (23.54 MB)
MP4
097  Chapter 13  Testing each model's accuracy.mp4 (18.94 MB)
MP4
098  Chapter 13  Tuning the hyperparameters to find the best model Grid search.mp4 (20.26 MB)
MP4

https://thumbs2.imgbox.com/8f/b7/ani4WrHc_t.jpg

Код:
 https://fikper.com/s63ivui3c3/Oreilly.-.Grokking.Machine.Learning.video.edition.part1.rar.html
https://fikper.com/qifSJ0k1Hk/Oreilly.-.Grokking.Machine.Learning.video.edition.part2.rar.html
Код:
 https://rapidgator.net/file/5e1d3804f4b3bb80fa749ffdbd0ff14f/Oreilly.-.Grokking.Machine.Learning.video.edition.part1.rar
https://rapidgator.net/file/27fc30d1d80930f3abf9b0f657d8fa5b/Oreilly.-.Grokking.Machine.Learning.video.edition.part2.rar

https://img89.pixhost.to/images/72/375727939_katfile.png

Код:
 https://katfile.com/89wjzpcxf28g/Oreilly.-.Grokking.Machine.Learning.video.edition.part1.rar
https://katfile.com/jfytsvvrdoyc/Oreilly.-.Grokking.Machine.Learning.video.edition.part2.rar

Free search engine download скачать: Oreilly - Grokking Machine Learning, video edition