https://img87.pixhost.to/images/599/359020115_tuto.jpg
5.94 GB | 00:15:51 | mp4 | 1280X720  | 16:9
Genre:eLearning |Language:English


Files Included :
1 -Welcome to the Course!  (53.79 MB)
1 -Grouping and Aggregation 101  (93.69 MB)
2 -Applying Multiple Aggregations  (69.77 MB)
3 -Grouping By Multiple Columns  (48.35 MB)
4 -The `transform` Method  (79.41 MB)
5 -Pythonic Pivot Tables  (107.69 MB)
1 -`upper`, `lower`, and `capitalize`  (47.42 MB)
2 -The `len` Method  (29.11 MB)
3 -Regular Expressions 101  (64.81 MB)
4 -Matching Digits with Regular Expressions  (26.03 MB)
5 -The `contains` Method  (97.56 MB)
6 -The `replace` Method I  (59.09 MB)
7 -The `replace` Method II  (62.65 MB)
1 -Using Datetime Values as Criteria  (103.13 MB)
2 -The `datetime` Module I  (60.68 MB)
3 -The `datetime` Module II  (40.09 MB)
4 -Date Math in Pandas  (88.97 MB)
5 -The `shift` Method I  (90.73 MB)
6 -The `shift` Method II  (45.19 MB)
7 -Calculating `rolling` Averages  (73.39 MB)
1 -Data Visualization 101 1  (65.88 MB)
2 -Data Visualization 101 2  (21.25 MB)
3 -Bar Plots  (45.85 MB)
4 -Scatter Plots  (63.71 MB)
5 -Customizing Plot Appearance  (31.97 MB)
6 -Customizing Plot Axes  (59.65 MB)
1 -Apply-ing Functions to Data Analysis  (19.65 MB)
2 -If Statements in Python  (23.36 MB)
3 -Incorporating Multiple Logical Conditions  (33.91 MB)
4 -Incorporating And and Or Logic  (42.24 MB)
5 -Functions in Python  (27.45 MB)
6 -Returning Values From Functions I  (25.27 MB)
7 -Returning Values From Functions II  (33.28 MB)
1 -The `map` Method  (38.53 MB)
2 -Using `map` with Custom Functions I  (54.66 MB)
3 -Using `map` with Custom Functions II  (72.23 MB)
4 -The `apply` Method  (61.98 MB)
5 -Applying `apply` to Multiple Columns  (43.31 MB)
1 -What Is Programming  (23.51 MB)
10 -Comments  (17.13 MB)
11 -Text Cells  (83.05 MB)
12 -Colab Tips and Pitfalls  (53.18 MB)
13 -Objects, Attributes, and Methods  (35.87 MB)
14 -Modules and Libraries  (42.87 MB)
15 -Lists  (36.2 MB)
16 -Tuples  (36.15 MB)
17 -Dictionaries  (54.94 MB)
2 -The Programming Environment  (51.23 MB)
3 -Values and Types  (26.62 MB)
4 -Functions  (32.72 MB)
5 -Expressions  (26.02 MB)
6 -Expressions in Colab  (12.92 MB)
7 -Variables  (43.35 MB)
8 -Naming Variables  (21.73 MB)
9 -Errors  (17.66 MB)
1 -Introducing DataFrames  (44.25 MB)
10 -Selecting Columns  (24.31 MB)
2 -Introducing the Example Datasets  (37.74 MB)
3 -DataFrames and the `read csv` Method - Part I  (99.97 MB)
4 -DataFrames and the `read csv` Method - Part II  (31.56 MB)
5 -Providing DataFrame Column Names  (39.32 MB)
6 -Inspecting DataFrames  (53.73 MB)
7 -Data Types and the `info` Method  (65.37 MB)
8 -Renaming Columns  (44.79 MB)
9 -Dropping Columns  (45.64 MB)
1 -Series 101  (48.25 MB)
2 -Converting Series with `to numeric`  (53.56 MB)
3 -Converting Series with `to datetime`  (39.05 MB)
4 -Adding Columns (Series) to DataFrames  (61.05 MB)
5 -Creating Derived Columns  (92.02 MB)
6 -The `assign` Method  (85 MB)
1 -The `sum` Method  (80.3 MB)
2 -The `count` Method  (48.15 MB)
3 -Mean and Median  (57.13 MB)
4 -Standard Deviation and the `describe` Method  (68.6 MB)
5 -Using `describe` on Non-Numeric Fields  (59.33 MB)
6 -The `unique` and `nunique` Methods  (44.2 MB)
7 -The `value counts` Method  (24.8 MB)
1 -The `iloc` Method  (70.36 MB)
2 -Indexing Basics  (80.9 MB)
3 -The `loc` Method  (33.59 MB)
4 -Sorting by Index  (75.75 MB)
5 -Sorting By Columns  (126.03 MB)
6 -Dropping Rows By Index  (73.55 MB)
1 -Filtering DataFrames with a Boolean Series  (55.49 MB)
2 -Applying Other Logical Conditions  (60.8 MB)
3 -The `between` and `isin` Methods  (67.09 MB)
4 -Combining Conditions Using the `&` Operator  (125.81 MB)
5 -Combining Conditions Using the `` Operator  (40.6 MB)
6 -Combining 'And' & 'Or' Logic  (122.39 MB)
7 -Negation  (74.49 MB)
8 -The `isna` Method  (98.84 MB)
1 -Updating DataFrame Values with `loc`  (40.71 MB)
2 -Replacing DataFrame Values  (48.93 MB)
3 -Updating Values with Boolean Masks  (86.19 MB)
4 -Removing Null Values  (93.58 MB)
5 -Replacing Null Values  (61.57 MB)
6 -Identifying Duplicate Data  (57.87 MB)
7 -Removing Duplicate Data  (61 MB)
1 -Stacking Datasets Vertically I  (53.93 MB)
2 -Stacking Datasets Vertically II  (52.99 MB)
3 -Fetching Excel Data Into Pandas  (63.21 MB)
4 -Joining DataFrames Horizontally I  (49.94 MB)
5 -Joining DataFrames Horizontally II  (75.81 MB)
6 -Left and Right Joins  (81.38 MB)
7 -Full Outer Joins  (52.19 MB)
8 -Combining More Than Two Tables  (72.18 MB)
[align=center]
Screenshot
https://images2.imgbox.com/d5/65/NF62r0sZ_o.jpg

[/align]

Код:
https://ddownload.com/fdsuc0i84z0s/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part1.rar
https://ddownload.com/5xdoiqpuu7iz/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part2.rar
https://ddownload.com/dle6xe3xfxff/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part3.rar
https://ddownload.com/0us21e688y7f/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part4.rar
Код:
https://rapidgator.net/file/74fd6b5ddb8806e4954946957213471f/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part1.rar
https://rapidgator.net/file/5fe12cfa950c4f187846c22d7eaf844c/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part2.rar
https://rapidgator.net/file/0e7d437f481d58ea3cdf3748f637eba8/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part3.rar
https://rapidgator.net/file/aa57d58c20fe1b122dc2855e6ee492a8/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part4.rar
Код:
https://turbobit.net/adl7yeq6lnkk/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part1.rar.html
https://turbobit.net/d1t4wqeqjsnt/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part2.rar.html
https://turbobit.net/4gl5mm4wszo1/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part3.rar.html
https://turbobit.net/rd5i1jjptjcv/Udemy_The_2024_Pandas_Bootcamp_Advanced_Data_Analysis_with_Python_.part4.rar.html