pdf | 15.2 MB | English| Isbn:9798369348741 | Author: S Suman Rajest (Editor), Salvatore Moccia (Editor), Bhopendra Singh (Editor) | Year: 2024
Description:
The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire device's learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems' optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.
https://fileaxa.com/k6l349oc2nmf
https://ddownload.com/7ldzvtcesk1a
https://rapidgator.net/file/82698a3556a40805578637c8ada78680/
https://turbobit.net/a71io5qw34rg.html