https://img87.pixhost.to/images/599/359020115_tuto.jpg


download скачать Free download скачать : Pluralsight - Building Deep Learning Solutions with PyTorch
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:2.51 GB

Files Included :

1  Course Overview.mp4 (3.7 MB)
MP4
01  Version Check.mp4 (550.56 KB)
MP4
02  Module Overview.mp4 (1.3 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.8 MB)
MP4
04  Representation Learning Using Neural Networks.mp4 (10.35 MB)
MP4
05  Neuron as a Mathematical Function.mp4 (9.26 MB)
MP4
06  Activation Functions.mp4 (7.32 MB)
MP4
07  Introducing PyTorch.mp4 (5.73 MB)
MP4
08  TensorFlow and PyTorch.mp4 (6.75 MB)
MP4
09  Demo - PyTorch Install and Setup.mp4 (9.51 MB)
MP4
10  Summary.mp4 (1.4 MB)
MP4
01  Module Overview.mp4 (3.21 MB)
MP4
02  Demo - Creating and Initializing Tensors.mp4 (13.19 MB)
MP4
03  Demo - Simple Operations on Tensors.mp4 (10.82 MB)
MP4
04  Demo - Elementwise and Matrix Operations on Tensors.mp4 (7.69 MB)
MP4
05  Demo - Converting between PyTorch Tensors and NumPy Arrays.mp4 (8.39 MB)
MP4
06  PyTorch Support for CUDA Devices.mp4 (9.47 MB)
MP4
07  Demo - Setting up a Deep Learning VM to Work with GPUs.mp4 (15.47 MB)
MP4
08  Demo - Creating Tensors on CUDA-enabled Devices.mp4 (6.93 MB)
MP4
09  Demo - Working with the Device Context Manager.mp4 (9.23 MB)
MP4
10  Summary.mp4 (1.54 MB)
MP4
01  Module Overview.mp4 (1.54 MB)
MP4
02  Gradient Descent Optimization.mp4 (6.32 MB)
MP4
03  Forward and Backward Passes.mp4 (4.92 MB)
MP4
04  Calculating Gradients.mp4 (7.31 MB)
MP4
05  Using Gradients to Update Model Parameters.mp4 (5.9 MB)
MP4
06  Two Passes in Reverse Mode Automatic Differentiation.mp4 (5.99 MB)
MP4
07  Demo - Introducing Autograd.mp4 (10.08 MB)
MP4
08  Demo - Working with Gradients.mp4 (7.61 MB)
MP4
09  Demo - Variables and Tensors.mp4 (3.64 MB)
MP4
10  Demo - Training a Linear Model Using Autograd.mp4 (15.4 MB)
MP4
11  Summary.mp4 (2.07 MB)
MP4
01  Module Overview.mp4 (883.38 KB)
MP4
02  Static vs  Dynamic Computation Graphs.mp4 (11.53 MB)
MP4
03  Dynamic Computation Graphs in PyTorch.mp4 (1.83 MB)
MP4
04  Demo - Installing Tensorflow, Graphviz, and Hidden Layer.mp4 (3.04 MB)
MP4
05  Demo - Building Dynamic Computations Graphs with PyTorch.mp4 (4.14 MB)
MP4
06  Demo - Visualizing Neural Networks in PyTorch Using Hidden Layer.mp4 (5.35 MB)
MP4
07  Demo - Building Static Computation Graphs with Tensorflow.mp4 (11.05 MB)
MP4
08  Demo - Visualizing Tensorflow Graphs with Tensorboard.mp4 (3.92 MB)
MP4
09  Demo - Dynamic Computation Graphs in Tensorflow with Eager Execution.mp4 (5.98 MB)
MP4
10  Debugging in PyTorch and Tensorflow.mp4 (2.13 MB)
MP4
11  Summary and Further Study.mp4 (2.27 MB)
MP4
1  Course Overview.mp4 (3.81 MB)
MP4
01  Version Check.mp4 (560.53 KB)
MP4
02  Module Overview.mp4 (1.63 MB)
MP4
03  Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
04  CUDA Support in PyTorch.mp4 (10.08 MB)
MP4
05  Exploring PyTorch Install Options on a Local Machine.mp4 (4.38 MB)
MP4
06  Setting up a Virtual Machine.mp4 (9.41 MB)
MP4
07  Installing PyTorch with CPU Support Using Conda.mp4 (19.17 MB)
MP4
08  Installing PyTorch with CPU Support Using Pip.mp4 (10.37 MB)
MP4
09  Adding GPU Support to the VM and Installing the CUDA Toolkit.mp4 (15.1 MB)
MP4
10  Installing PyTorch with GPU Support Using Conda.mp4 (9.74 MB)
MP4
11  Installing PyTorch with CUDA Support Using Pip.mp4 (5.37 MB)
MP4
12  Module Summary.mp4 (1.87 MB)
MP4
1  Module Overview.mp4 (1.77 MB)
MP4
2  Linear Regression.mp4 (6.28 MB)
MP4
3  Finding the Best Fit Line.mp4 (5.23 MB)
MP4
4  Gradient Descent.mp4 (7.27 MB)
MP4
5  Training a Simple Neural Network with One Neuron.mp4 (12.18 MB)
MP4
7  Preventing Overfitting Using Regularization.mp4 (7.32 MB)
MP4
9  Module Summary.mp4 (2.3 MB)
MP4
01  Module Overview.mp4 (1.73 MB)
MP4
02  Training a Neural Network Forward and Backward Passes.mp4 (4.16 MB)
MP4
03  Optimizers.mp4 (5.76 MB)
MP4
04  Building a Neural Network Using PyTorch Layers.mp4 (10.46 MB)
MP4
05  Training a Neural Network Using Optimizers.mp4 (4.77 MB)
MP4
06  Dropout.mp4 (5.66 MB)
MP4
07  Epochs and Batches.mp4 (2.59 MB)
MP4
08  Exploring the Bike Sharing Dataset.mp4 (11.75 MB)
MP4
09  Using Datasets and Data Loaders in PyTorch.mp4 (5.38 MB)
MP4
10  Building and Train a Neural Network for Bike Sharing Demand Prediction.mp4 (11.88 MB)
MP4
11  Working with Different Neural Network Architectures.mp4 (9.11 MB)
MP4
12  Module Summary.mp4 (1.95 MB)
MP4
01  Module Overview.mp4 (1.77 MB)
MP4
02  Softmax and Cross Entropy.mp4 (6.67 MB)
MP4
03  Softmax and LogSoftmax.mp4 (4.48 MB)
MP4
04  Evaluating Classifiers.mp4 (3.28 MB)
MP4
05  Exploring the Graduate Admissions Dataset.mp4 (9.86 MB)
MP4
06  Preprocessing the Data.mp4 (8.19 MB)
MP4
07  Building a Custom Neural Network.mp4 (10.65 MB)
MP4
08  Training and Evaluating the Neural Network.mp4 (8 MB)
MP4
09  Customizing and Evaluating Different Models.mp4 (10.53 MB)
MP4
10  Summary and Further Study.mp4 (2.32 MB)
MP4
1  Course Overview.mp4 (2.92 MB)
MP4
01  Version Check.mp4 (577.35 KB)
MP4
02  Module Overview.mp4 (1.28 MB)
MP4
03  Prerequisites and Course Outline.mp4 (1.82 MB)
MP4
04  Machine Learning on the Cloud.mp4 (3.83 MB)
MP4
05  PyTorch - Taxonomy of Solutions.mp4 (4.76 MB)
MP4
06  Introducing SageMaker.mp4 (3.83 MB)
MP4
07  Creating a SageMaker Notebook Instance.mp4 (17.35 MB)
MP4
08  Prototyping a PyTorch Model on SageMaker Notebooks.mp4 (18.17 MB)
MP4
09  PyTorch Estimators on SageMaker.mp4 (2.34 MB)
MP4
10  Distributed Data Loading in PyTorch.mp4 (13.62 MB)
MP4
11  Distributed Training in PyTorch.mp4 (17.78 MB)
MP4
12  Using PyTorch Estimators for Distributed Training.mp4 (16.23 MB)
MP4
13  Model Deployment and Prediction Using Estimators.mp4 (10.28 MB)
MP4
14  AWS Deep Learning AMIs.mp4 (2.61 MB)
MP4
15  Instantiating a Deep Learning VM.mp4 (18.57 MB)
MP4
16  Building Models with GPU Support on the AWS Deep Learning VM.mp4 (13.2 MB)
MP4
01  Module Overview.mp4 (1.42 MB)
MP4
02  Introducing Azure Machine Learning Service.mp4 (2.64 MB)
MP4
03  Prototyping PyTorch Models on Azure Notebooks.mp4 (16.01 MB)
MP4
04  Azure Machine Learning Service Workflow.mp4 (4.5 MB)
MP4
05  Understanding Terms in Azure Machine Learning.mp4 (3.81 MB)
MP4
06  Horovod for Distributed Training.mp4 (1.84 MB)
MP4
07  Distributed Training in PyTorch Using the Horovod Framework.mp4 (22.73 MB)
MP4
08  Instantiating the PyTorch Estimator for Distributed Training.mp4 (17.23 MB)
MP4
09  Distributed Run Using the PyTorch Estimator.mp4 (11.05 MB)
MP4
10  The Azure Deep Learning VM.mp4 (2.52 MB)
MP4
11  Instantiating an Azure Deep Learning VM.mp4 (15.53 MB)
MP4
12  Building PyTorch Models with GPU Support on Azure Deep Learning VMs.mp4 (12.95 MB)
MP4
1  Module Overview.mp4 (1004.95 KB)
MP4
2  Cloud Datalab and Deep Learning VMs.mp4 (4.11 MB)
MP4
3  Setting up a Cloud Datalab VM.mp4 (16.9 MB)
MP4
4  Prototyping PyTorch Models Using Cloud Datalab.mp4 (5.43 MB)
MP4
6  Using JupyterLab on a GCP Deep Learning VM.mp4 (4.64 MB)
MP4
7  Summary and Further Study.mp4 (2.04 MB)
MP4
1  Course Overview.mp4 (3.44 MB)
MP4
01  Version Check.mp4 (564.49 KB)
MP4
02  Module Overview.mp4 (1.71 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.3 MB)
MP4
04  Single Channel and Multichannel Images.mp4 (6.47 MB)
MP4
05  Preprocessing Images to Train Robust Models.mp4 (8.46 MB)
MP4
06  Setting up a Deep Learning VM.mp4 (12.06 MB)
MP4
07  Image Preprocessing - Resizing and Rescaling Images.mp4 (12.74 MB)
MP4
08  Cropping and Denoising Images.mp4 (11.21 MB)
MP4
09  Standardizing Images in PyTorch.mp4 (8.89 MB)
MP4
10  ZCA Whitening to Decorrelate Features.mp4 (5.5 MB)
MP4
11  Image Transformations Using PyTorch Libraries.mp4 (5.72 MB)
MP4
12  Normalizing Images Using Mean and Standard Deviation.mp4 (10.31 MB)
MP4
13  Module Summary.mp4 (1.81 MB)
MP4
1  Module Overview.mp4 (2.25 MB)
MP4
2  Deep Neural Networks to Work with Images.mp4 (10.8 MB)
MP4
3  Loading and Processing MNIST Images.mp4 (11.78 MB)
MP4
6  Module Summary.mp4 (1.81 MB)
MP4
1  Module Overview.mp4 (1.76 MB)
MP4
2  Local Receptive Fields.mp4 (4.28 MB)
MP4
3  Understanding Convolution.mp4 (5.98 MB)
MP4
4  Convolutional Layers.mp4 (11.06 MB)
MP4
5  Pooling Layers.mp4 (6.38 MB)
MP4
6  Typical CNN Architecture.mp4 (5.89 MB)
MP4
7  Applying Convolutional and Pooling Layers.mp4 (17.28 MB)
MP4
8  Module Summary.mp4 (1.77 MB)
MP4
01  Module Overview.mp4 (2 MB)
MP4
02  Zero Padding and Stride Size.mp4 (6.49 MB)
MP4
03  Batch Normalization.mp4 (7.18 MB)
MP4
04  Activation Functions.mp4 (3.72 MB)
MP4
05  Feature Map Size Calculations.mp4 (3.18 MB)
MP4
06  Preparing and Exploring Image Data.mp4 (7.83 MB)
MP4
07  Setting up a Convolutional Neural Network.mp4 (11.25 MB)
MP4
08  Training a CNN.mp4 (10.25 MB)
MP4
09  Hyperparameter Tuning.mp4 (10.53 MB)
MP4
10  Module Summary.mp4 (2.1 MB)
MP4
1  Module Overview.mp4 (1.59 MB)
MP4
2  Preparing the CIFAR-10 Dataset.mp4 (7.73 MB)
MP4
3  Setting up the CNN.mp4 (6.92 MB)
MP4
4  Training the CNN.mp4 (8.45 MB)
MP4
5  Choosing Different Activation Functions.mp4 (7.7 MB)
MP4
6  Choosing Pooling Layers.mp4 (7.2 MB)
MP4
7  Choosing Convolution Kernel Sizes.mp4 (8.24 MB)
MP4
8  Additional Convolution Layers and Different Kernel Size.mp4 (8.5 MB)
MP4
9  Module Summary.mp4 (1.64 MB)
MP4
1  Module Overview.mp4 (1.81 MB)
MP4
2  Transfer Learning.mp4 (7.72 MB)
MP4
3  Using the Resnet-18 Pretrained Model.mp4 (12.04 MB)
MP4
4  The Train Function to Find the Best Model Weights.mp4 (8.45 MB)
MP4
5  Predictions Using Pretrained Models.mp4 (4.68 MB)
MP4
6  Cleaning up Resources.mp4 (2.25 MB)
MP4
7  Summary and Further Study.mp4 (2.13 MB)
MP4
1  Course Overview.mp4 (3.85 MB)
MP4
01  Version Check.mp4 (554.89 KB)
MP4
02  Module Overview.mp4 (1.83 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.3 MB)
MP4
04  Content, Style, and Target Images.mp4 (7.26 MB)
MP4
05  Training the Target Image for Style Transfer.mp4 (12.48 MB)
MP4
06  Content Loss.mp4 (6.22 MB)
MP4
07  Style Loss - Cosine Similarity and Dot Products.mp4 (5.37 MB)
MP4
08  Style Loss - Gram Matrix.mp4 (5.75 MB)
MP4
09  Setting up a Deep Learning Virtual Machine.mp4 (11.45 MB)
MP4
10  Using Convolution Filters to Detect Features.mp4 (14.67 MB)
MP4
11  Module Summary.mp4 (1.85 MB)
MP4
1  Module Overview.mp4 (1.82 MB)
MP4
2  Pretrained Models for Style Transfer.mp4 (3.82 MB)
MP4
3  Loading the VGG19 Pretrained Model.mp4 (7.11 MB)
MP4
4  Exploring and Transforming the Content and Style Images.mp4 (14.27 MB)
MP4
5  Extracting Feature Maps from the Content and Style Images.mp4 (7.96 MB)
MP4
6  Calculating the Gram Matrix to Extract Style Information.mp4 (5.89 MB)
MP4
7  Training the Target Image to Perform Style Transfer.mp4 (12.44 MB)
MP4
8  Style Transfer Using AlexNet.mp4 (14.74 MB)
MP4
9  Module Summary.mp4 (1.01 MB)
MP4
01  Module Overview.mp4 (2.06 MB)
MP4
02  Understanding Generative Adversarial Networks (GANs).mp4 (9.46 MB)
MP4
03  Training a GAN.mp4 (4.96 MB)
MP4
04  Understanding the Leaky ReLU Activation Function.mp4 (8.79 MB)
MP4
05  Loading and Exploring the MNIST Handwritten Digit Images.mp4 (9.01 MB)
MP4
06  Setting up the Generator and Discriminator Neural Networks.mp4 (8.3 MB)
MP4
07  Training the Discriminator.mp4 (9.39 MB)
MP4
08  Training the Generator and Generating Fake Images.mp4 (7.97 MB)
MP4
09  Cleaning up Resources.mp4 (2.66 MB)
MP4
10  Summary and Further Study.mp4 (2.59 MB)
MP4
1  Course Overview.mp4 (3.35 MB)
MP4
1  Version Check.mp4 (560.2 KB)
MP4
2  Module Overview.mp4 (1.99 MB)
MP4
3  Prerequisites and Course Outline.mp4 (2.26 MB)
MP4
4  RNNs for Natural Language Processing.mp4 (5.57 MB)
MP4
5  Recurrent Neurons.mp4 (6.8 MB)
MP4
6  Back Propagation through Time.mp4 (7.46 MB)
MP4
7  Coping with Vanishing and Exploding Gradients.mp4 (9.61 MB)
MP4
8  Long Memory Cells.mp4 (10.05 MB)
MP4
9  Module Summary.mp4 (2.23 MB)
MP4
01  Module Overview.mp4 (1.81 MB)
MP4
02  Word Embeddings to Represent Text Data.mp4 (7.27 MB)
MP4
03  Introducing torchtext to Process Text Data.mp4 (3.62 MB)
MP4
04  Feeding Text Data into RNNs.mp4 (5.15 MB)
MP4
05  Setup and Data Cleaning.mp4 (8.15 MB)
MP4
06  Using Torchtext to Process Text Data.mp4 (18.78 MB)
MP4
07  Designing an RNN for Binary Text Classification.mp4 (11.08 MB)
MP4
08  Training the RNN.mp4 (10.96 MB)
MP4
09  Using LSTM Cells and Dropout.mp4 (5.59 MB)
MP4
10  Module Summary.mp4 (1.91 MB)
MP4
1  Module Overview.mp4 (2.05 MB)
MP4
2  Language Prediction Based on Names.mp4 (3.22 MB)
MP4
3  Loading and Cleaning Data.mp4 (14.07 MB)
MP4
4  Helper Functions to One Hot Encode Names.mp4 (6.32 MB)
MP4
5  Designing an RNN for Multiclass Text Classification.mp4 (16.32 MB)
MP4
6  Predicting Language from Names.mp4 (13.01 MB)
MP4
7  Module Summary.mp4 (1.87 MB)
MP4
01  Module Overview.mp4 (2.35 MB)
MP4
02  Numeric Representations of Words.mp4 (4.39 MB)
MP4
03  Word Embeddings Capture Context and Meaning.mp4 (6.44 MB)
MP4
04  Generating Analogies Using GloVe Embeddings.mp4 (16.52 MB)
MP4
05  Multilayer RNNs.mp4 (2.71 MB)
MP4
06  Bidirectional RNNs.mp4 (6.71 MB)
MP4
07  Data Cleaning and Preparation.mp4 (17.63 MB)
MP4
08  Designing a Multilayer Bidirectional RNN.mp4 (11.32 MB)
MP4
09  Performing Sentiment Analysis Using an RNN.mp4 (7.81 MB)
MP4
10  Module Summary.mp4 (1.99 MB)
MP4
01  Module Overview.mp4 (1.96 MB)
MP4
02  Using Sequences and Vectors with RNNs.mp4 (5.44 MB)
MP4
04  Representing Input and Target Sentences.mp4 (2.7 MB)
MP4
05  Teacher Forcing.mp4 (4.96 MB)
MP4
07  Preparing Sentence Pairs.mp4 (10.68 MB)
MP4
08  Designing the Encoder and Decoder.mp4 (10.19 MB)
MP4
10  Translating Sentences.mp4 (9.27 MB)
MP4
11  Summary and Further Study.mp4 (3.16 MB)
MP4
1  Course Overview.mp4 (3.43 MB)
MP4
01  Version Check.mp4 (612.26 KB)
MP4
02  Module Overview.mp4 (2.18 MB)
MP4
03  Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
04  Introducing Transfer Learning.mp4 (7.2 MB)
MP4
06  Categorizing Transfer Learning.mp4 (9.73 MB)
MP4
07  Transfer Learning Scenarios.mp4 (7.92 MB)
MP4
08  Freeze or Fine-tune Layers.mp4 (7.45 MB)
MP4
09  Benefits of Transfer Learning.mp4 (3.66 MB)
MP4
10  Pre-trained Models in PyTorch.mp4 (9.67 MB)
MP4
12  Exploring Pre-trained Models in PyTorch.mp4 (21.1 MB)
MP4
13  Module Summary.mp4 (1.9 MB)
MP4
1  Module Overview.mp4 (2.66 MB)
MP4
8  Fine-tuning Top Layers.mp4 (7.13 MB)
MP4
9  Module Summary.mp4 (1.64 MB)
MP4
1  Module Overview.mp4 (2.34 MB)
MP4
2  Exploring and Loading the Chest X-Ray Dataset.mp4 (10.25 MB)
MP4
3  Training a Model from Scratch.mp4 (10.19 MB)
MP4
4  Exploring and Loading the Natural Images Dataset.mp4 (7.65 MB)
MP4
5  Fine-tuning the Network.mp4 (8.92 MB)
MP4
6  Cleaning up Resources.mp4 (2.54 MB)
MP4
7  Summary and Further Study.mp4 (1.94 MB)
MP4
1  Course Overview.mp4 (4.13 MB)
MP4
01  Version Check.mp4 (575.06 KB)
MP4
02  Prerequisites and Course Outline.mp4 (2.68 MB)
MP4
03  Structural and Predictive Models.mp4 (8 MB)
MP4
04  Demo - Install and Setup Pytorch.mp4 (8.18 MB)
MP4
05  Demo - Preparing Data.mp4 (12.32 MB)
MP4
06  Demo - Building a Simple Neural Network to Perform Regression.mp4 (11.7 MB)
MP4
07  Demo - Exploring the Diamonds Dataset.mp4 (9.54 MB)
MP4
08  Demo - Preparing and Processing Data.mp4 (10.25 MB)
MP4
09  Demo - Building and Training a Regression Model.mp4 (16.7 MB)
MP4
10  Demo - Exploring and Preprocessing Data.mp4 (15.6 MB)
MP4
11  Demo - Defining the Neural Network and Helper Functions.mp4 (12.79 MB)
MP4
1  Text as Sequential Data.mp4 (4.33 MB)
MP4
2  The Recurrent Neuron.mp4 (5.18 MB)
MP4
3  RNN Training and Long Memory Cells.mp4 (8.18 MB)
MP4
4  RNN to Generate Names in Languages.mp4 (4.94 MB)
MP4
5  Demo - Loading and Preparing Training Data.mp4 (11.14 MB)
MP4
6  Demo - Setting up Helper Functions.mp4 (9.87 MB)
MP4
7  Demo - Defining the RNN.mp4 (18.26 MB)
MP4
8  Demo - Training the RNN and Generating Names.mp4 (16.41 MB)
MP4
01  Finding Patterns in Data.mp4 (4.53 MB)
MP4
02  Association Rule Learning.mp4 (3.6 MB)
MP4
03  Clustering.mp4 (4.84 MB)
MP4
04  Content Based Approaches to Recommendations.mp4 (7.14 MB)
MP4
05  Collaborative Filtering.mp4 (5.66 MB)
MP4
06  Nearest Neighborhood.mp4 (4 MB)
MP4
07  Matrix Factorization.mp4 (9.28 MB)
MP4
08  Alternating Least Squares to Estimate the Ratings Matrix.mp4 (5.8 MB)
MP4
09  Evaluation Metrics vs  Loss Metrics.mp4 (4.08 MB)
MP4
10  Mean Average Precision @ K.mp4 (11.27 MB)
MP4
11  Demo - Initializing the Ratings Matrix.mp4 (11.56 MB)
MP4
12  Demo - Setting up the Neural Network.mp4 (12.31 MB)
MP4
13  Demo - The Train Helper Function.mp4 (20.3 MB)
MP4
14  Demo - The Evaluate Helper Function.mp4 (6.51 MB)
MP4
16  Summary and Further Study.mp4 (2.12 MB)
MP4
1  Course Overview.mp4 (3.78 MB)
MP4
01  Version Check.mp4 (606.15 KB)
MP4
02  Module Overview.mp4 (2.89 MB)
MP4
03  Prerequisites and Course Outline.mp4 (1.88 MB)
MP4
04  Saving and Loading PyTorch Models.mp4 (10.23 MB)
MP4
05  Building and Training a Classifier Model.mp4 (11.85 MB)
MP4
06  Saving and Loading Models Using torch save().mp4 (16.55 MB)
MP4
07  Saving Model Using the state dict.mp4 (15.29 MB)
MP4
08  Saving and Loading Checkpoints.mp4 (10.08 MB)
MP4
09  Introducing ONNX.mp4 (2.76 MB)
MP4
10  Exporting a Model to ONNX and Loading in Caffe2.mp4 (18.34 MB)
MP4
11  Module Summary.mp4 (1.88 MB)
MP4
1  Module Overview.mp4 (1.67 MB)
MP4
3  Training Using Multiple Processes.mp4 (14.27 MB)
MP4
5  Training on Multiple GPUs.mp4 (12.41 MB)
MP4
6  Module Summary.mp4 (1.69 MB)
MP4
1  Module Overview.mp4 (1.97 MB)
MP4
2  Distributed Training on the Cloud.mp4 (5.48 MB)
MP4
3  Setting up a SageMaker Notebook Instance.mp4 (8.88 MB)
MP4
4  Setting up Training and Test Data Loaders.mp4 (9.46 MB)
MP4
5  Define the Training Function.mp4 (9.4 MB)
MP4
8  Module Summary.mp4 (1.54 MB)
MP4
1  Module Overview.mp4 (1.78 MB)
MP4
2  Exploring Options to Deploy PyTorch Models.mp4 (6.18 MB)
MP4
4  Creating a Flask App to Serve the PyTorch Model.mp4 (10.87 MB)
MP4
5  Using the Model for Prediction.mp4 (4.51 MB)
MP4
6  Installing Docker.mp4 (5.56 MB)
MP4
7  Creating and Using a Clipper Cluster for Prediction.mp4 (17.09 MB)
MP4
9  Summary and Further Study.mp4 (2.01 MB)
MP4

https://thumbs2.imgbox.com/53/db/9Jx826Xk_t.jpg

https://img87.pixhost.to/images/1010/363506399_rg.png

Код:
 https://rapidgator.net/file/75aba01f7c9a653802e32a23e2e70d9d/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z01
https://rapidgator.net/file/99b80a4be5a4f0a9583c199cbaa0a25e/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z02
https://rapidgator.net/file/46edbd5b669d2050a24a35701428bc45/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.zip

https://img88.pixhost.to/images/1104/374887060_banner_240-32.png

Код:
 https://ddownload.com/v2yfxkggjtq3/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z01
https://ddownload.com/2e8x077isw6z/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z02
https://ddownload.com/73ekh00amjk6/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.zip

https://img87.pixhost.to/images/1103/364146951_nitroflare.jpg

Код:
 https://nitroflare.com/view/9993E429D6425D9/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z01
https://nitroflare.com/view/DFD1C5B84E33901/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.z02
https://nitroflare.com/view/FD614EE70DFBE27/Pluralsight_-_Building_Deep_Learning_Solutions_with_PyTorch.zip