https://img87.pixhost.to/images/599/359020115_tuto.jpg


download скачать Free download скачать : Pluralsight - Building Machine Learning Solutions with scikit-learn
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:1.91 GB

Files Included :

1  Course Overview.mp4 (3.09 MB)
MP4
01  Module Overview.mp4 (1.53 MB)
MP4
02  Prerequisites and Course Outline.mp4 (1.22 MB)
MP4
03  Introducing Machine Learning.mp4 (4.8 MB)
MP4
04  Learning from Data - Training and Prediction.mp4 (7.88 MB)
MP4
05  Traditional and Representation ML Models.mp4 (11.46 MB)
MP4
06  The Niche of scikit-learn in ML.mp4 (7.94 MB)
MP4
07  Exploring scikit-learn Libraries.mp4 (35.84 MB)
MP4
08  Supervised and Unsupervised Learning.mp4 (9.21 MB)
MP4
09  Installing scikit-learn Libraries.mp4 (5.55 MB)
MP4
10  Summary.mp4 (1.86 MB)
MP4
01  Module Overview.mp4 (1.41 MB)
MP4
02  The Machine Learning Workflow.mp4 (6.66 MB)
MP4
05  Choosing the Right Estimator - Clustering.mp4 (3.22 MB)
MP4
11  Summary.mp4 (1.97 MB)
MP4
1  Module Overview.mp4 (1.28 MB)
MP4
2  Understanding Linear Regression.mp4 (5.99 MB)
MP4
3  Data Preparation for Machine Learning.mp4 (13.28 MB)
MP4
5  Understanding Logistic Regression.mp4 (9.58 MB)
MP4
7  Summary and Further Study.mp4 (1.8 MB)
MP4
1  Course Overview.mp4 (3.07 MB)
MP4
1  Module Overview.mp4 (1.84 MB)
MP4
2  Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
4  Logistic Regression Intuition.mp4 (8.34 MB)
MP4
5  Cross Entropy Intuition.mp4 (3.43 MB)
MP4
6  Accuracy, Precision, and Recall.mp4 (8.75 MB)
MP4
8  Types of Classification.mp4 (5.92 MB)
MP4
9  Module Summary.mp4 (1.58 MB)
MP4
1  Module Overview.mp4 (1.55 MB)
MP4
2  Installing and Setting up scikit-learn.mp4 (5.39 MB)
MP4
3  Exploring the Titanic Dataset.mp4 (14.48 MB)
MP4
4  Visualizing Relationships in the Data.mp4 (9.09 MB)
MP4
5  Preprocessing the Data.mp4 (9.09 MB)
MP4
6  Training a Logistic Regression Binary Classifier.mp4 (9.81 MB)
MP4
9  Module Summary.mp4 (1.89 MB)
MP4
01  Module Overview.mp4 (1.91 MB)
MP4
02  Choosing Classification Algorithms.mp4 (3.37 MB)
MP4
06  Stochastic Gradient Descent.mp4 (3.87 MB)
MP4
08  Support Vector Machines.mp4 (11.49 MB)
MP4
09  Implementing Support Vector Classification.mp4 (5.62 MB)
MP4
10  Nearest Neighbors.mp4 (5.03 MB)
MP4
12  Decision Trees.mp4 (4.54 MB)
MP4
13  Implementing Decision Tree Classification.mp4 (5.54 MB)
MP4
14  Naive Bayes.mp4 (5.9 MB)
MP4
15  Implementing Naive Bayes Classification.mp4 (3.44 MB)
MP4
16  Module Summary.mp4 (2.22 MB)
MP4
1  Module Overview.mp4 (1.41 MB)
MP4
2  Hyperparameter Tuning.mp4 (5.64 MB)
MP4
5  Module Summary.mp4 (1.36 MB)
MP4
1  Module Overview.mp4 (1.48 MB)
MP4
2  Representing Images as Matrices.mp4 (4.48 MB)
MP4
3  Exploring the Fashion MNIST Dataset.mp4 (12.03 MB)
MP4
5  Summary and Further Study.mp4 (1.74 MB)
MP4
1  Course Overview.mp4 (3.63 MB)
MP4
01  Module Overview.mp4 (1.79 MB)
MP4
02  Prerequisites and Course Outline.mp4 (1.98 MB)
MP4
04  Minimizing Least Square Error.mp4 (6.22 MB)
MP4
05  Installing and Setting up scikit-learn.mp4 (4.64 MB)
MP4
06  Exploring the Automobile Mpg Dataset.mp4 (14.51 MB)
MP4
09  R-squared and Adjusted R-squared.mp4 (2.21 MB)
MP4
10  Regression with Categorical Variables.mp4 (5.71 MB)
MP4
11  Module Summary.mp4 (1.61 MB)
MP4
1  Module Overview.mp4 (1.51 MB)
MP4
2  Simple Linear Regression.mp4 (16.22 MB)
MP4
3  Linear Regression with Multiple Features.mp4 (13.14 MB)
MP4
4  Standardizing Numeric Data.mp4 (10.02 MB)
MP4
5  Label Encoding and One-hot Encoding Categorical Data.mp4 (10.95 MB)
MP4
6  Linear Regression and the Dummy Trap.mp4 (12.13 MB)
MP4
7  Module Summary.mp4 (1.52 MB)
MP4
01  Module Overview.mp4 (1.59 MB)
MP4
02  Overview of Regression Models in scikit-learn.mp4 (3.34 MB)
MP4
03  Overfitting and Regularization.mp4 (6.13 MB)
MP4
04  Lasso, Ridge and Elastic Net Regression.mp4 (7.43 MB)
MP4
07  Lasso Regression.mp4 (6.43 MB)
MP4
08  Ridge Regression.mp4 (4.11 MB)
MP4
09  Elastic Net Regression.mp4 (13.86 MB)
MP4
10  Module Summary.mp4 (1.82 MB)
MP4
01  Module Overview.mp4 (1.96 MB)
MP4
02  Choosing Regression Algorithms.mp4 (4.15 MB)
MP4
03  Support Vector Regression.mp4 (8.64 MB)
MP4
04  Implementing Support Vector Regression.mp4 (6.06 MB)
MP4
05  Nearest Neighbors Regression.mp4 (6.36 MB)
MP4
06  Implementing K-nearest-neighbors Regression.mp4 (4.42 MB)
MP4
07  Stochastic Gradient Descent Regression.mp4 (4.32 MB)
MP4
08  Implementing Stochastic Gradient Descent Regression.mp4 (4.51 MB)
MP4
09  Decision Tree Regression.mp4 (6.35 MB)
MP4
10  Implementing Decision Tree Regression.mp4 (3.1 MB)
MP4
11  Least Angle Regression.mp4 (5.23 MB)
MP4
12  Implementing Least Angle Regression.mp4 (2.39 MB)
MP4
13  Regression with Polynomial Relationships.mp4 (2.5 MB)
MP4
14  Module Summary.mp4 (2.08 MB)
MP4
1  Module Overview.mp4 (1.49 MB)
MP4
2  Hyperparameter Tuning.mp4 (5.27 MB)
MP4
4  Tuning Different Regression Models Using Grid Search.mp4 (9.59 MB)
MP4
5  Summary and Further Study.mp4 (1.44 MB)
MP4
1  Course Overview.mp4 (2.68 MB)
MP4
01  Module Overview.mp4 (1.15 MB)
MP4
02  Prerequisites and Course Outline.mp4 (1.8 MB)
MP4
03  Supervised and Unsupervised Learning.mp4 (6.99 MB)
MP4
04  Clustering Objectives and Use Cases.mp4 (13.54 MB)
MP4
05  K-means Clustering.mp4 (5.99 MB)
MP4
06  Evaluating Clustering Models.mp4 (8.14 MB)
MP4
08  Performing K-means Clustering.mp4 (11.14 MB)
MP4
09  Evaluating K-means Clustering.mp4 (18.01 MB)
MP4
10  Exploring the Iris Dataset.mp4 (6.66 MB)
MP4
11  Performing K-means Clustering and Evaluation.mp4 (11.25 MB)
MP4
01  Module Overview.mp4 (1.53 MB)
MP4
02  Categories of Clustering Algorithms.mp4 (5.45 MB)
MP4
03  Setting up Helper Functions to Perform Clustering.mp4 (5.79 MB)
MP4
04  Choosing Clustering Algorithms.mp4 (9.69 MB)
MP4
05  Hierarchical Clustering.mp4 (8.1 MB)
MP4
06  Agglomerative Clustering.mp4 (7.18 MB)
MP4
07  DBSCAN Clustering.mp4 (7.63 MB)
MP4
08  Mean-shift Clustering.mp4 (10.24 MB)
MP4
09  BIRCH Clustering.mp4 (4.85 MB)
MP4
10  Affinilty Propagation Clustering.mp4 (6.41 MB)
MP4
11  Mini-batch K-means Clustering.mp4 (4.46 MB)
MP4
12  Spectral Clustering Using a Precomputed Matrix.mp4 (11.98 MB)
MP4
1  Module Overview.mp4 (860.16 KB)
MP4
2  Understanding the Silhouette Score.mp4 (4.05 MB)
MP4
3  K-means Number of Clusters - The Elbow Method.mp4 (5.61 MB)
MP4
4  K-means Number of Clusters - The Silhouette Method.mp4 (5.02 MB)
MP4
5  Seeds and Distance Measures.mp4 (2.23 MB)
MP4
6  Hyperparameter Tuning - K-means Clustering.mp4 (10.39 MB)
MP4
7  Hyperparameter Tuning - DBSCAN Clustering.mp4 (11.35 MB)
MP4
8  Hyperparameter Tuning - Mean-shift Clustering.mp4 (2.68 MB)
MP4
1  Module Overview.mp4 (1.06 MB)
MP4
2  Images as Matrices.mp4 (4.22 MB)
MP4
3  Exploring the MNIST Handwritten Digits Dataset.mp4 (5.43 MB)
MP4
4  Clustering Image Data.mp4 (8.8 MB)
MP4
5  Summary and Further Study.mp4 (1.65 MB)
MP4
1  Course Overview.mp4 (3.31 MB)
MP4
1  Module Overview.mp4 (1.55 MB)
MP4
2  Prerequisites and Course Outline.mp4 (2.18 MB)
MP4
3  Support for Neural Networks in scikit-learn.mp4 (7.65 MB)
MP4
4  Perceptrons and Neurons.mp4 (10.7 MB)
MP4
5  Multi-layer Perceptrons and Neural Networks.mp4 (4.91 MB)
MP4
6  Training a Neural Network.mp4 (8.34 MB)
MP4
7  Overfitting and Underfitting.mp4 (4.06 MB)
MP4
8  Module Summary.mp4 (1.79 MB)
MP4
1  Module Overview.mp4 (1.62 MB)
MP4
8  Module Summary.mp4 (1.81 MB)
MP4
1  Module Overview.mp4 (1.68 MB)
MP4
9  Module Summary.mp4 (1.81 MB)
MP4
1  Course Overview.mp4 (4.21 MB)
MP4
01  Module Overview.mp4 (1.36 MB)
MP4
02  Prerequisites and Course Outline.mp4 (2.22 MB)
MP4
03  The Curse of Dimensionality.mp4 (7.98 MB)
MP4
04  Overfitted Models and Data Sparsity.mp4 (5.27 MB)
MP4
05  Exploring Techniques for Reducing Dimensions.mp4 (4.88 MB)
MP4
06  Demo - Exploring the Classification Dataset.mp4 (11.74 MB)
MP4
08  Demo - Exploring the Regression Dataset.mp4 (10.38 MB)
MP4
10  Feature Selection and Dictionary Learning.mp4 (7.3 MB)
MP4
13  Demo - Finding the Best Value of K.mp4 (7.54 MB)
MP4
16  Summary.mp4 (1.49 MB)
MP4
01  Module Overview.mp4 (1.56 MB)
MP4
02  The Intuition Behind Principal Components Analysis.mp4 (10.01 MB)
MP4
03  Demo - Implementing Principal Component Analysis.mp4 (11.31 MB)
MP4
04  Demo - Building Regression Models with Principal Components.mp4 (4.96 MB)
MP4
05  Factor Analysis Using Singular Value Decomposition.mp4 (3.09 MB)
MP4
06  Demo - Implementing Factor Analysis.mp4 (13.18 MB)
MP4
07  Linear Discriminant Analysis for Dimensionality Reduction.mp4 (4.02 MB)
MP4
09  Demo - Linear Discriminant Analysis for Classification.mp4 (6.88 MB)
MP4
10  Summary.mp4 (2.2 MB)
MP4
01  Module Overview.mp4 (1.02 MB)
MP4
02  The Manifold Hypothesis and Manifold Learning.mp4 (9.13 MB)
MP4
04  Demo - Metric and Non-metric Multi Dimensional Scaling.mp4 (4.81 MB)
MP4
06  Demo - Manifold Learning with Locally Linear Embedding.mp4 (4.95 MB)
MP4
08  Demo - Manifold Learning with Handwritten Digits.mp4 (8.46 MB)
MP4
10  Demo - Manifold Learning on Olivetti Faces Dataset.mp4 (5.54 MB)
MP4
11  Summary and Further Study.mp4 (2.05 MB)
MP4
1  Course Overview.mp4 (3.33 MB)
MP4
01  Module Overview.mp4 (1.82 MB)
MP4
02  Prerequisites and Course Outline.mp4 (2.33 MB)
MP4
03  A Quick Overview of Ensemble Learning.mp4 (9.68 MB)
MP4
04  Averaging and Boosting, Voting and Stacking.mp4 (9.7 MB)
MP4
05  Decision Trees in Ensemble Learning.mp4 (5.17 MB)
MP4
06  Understanding Decision Trees.mp4 (4.82 MB)
MP4
07  Overfitted Models and Ensemble Learning.mp4 (7.56 MB)
MP4
08  Getting Started and Exploring the Environment.mp4 (3.78 MB)
MP4
09  Exploring the Classification Dataset.mp4 (14.71 MB)
MP4
10  Hard Voting.mp4 (10.83 MB)
MP4
11  Soft Voting.mp4 (9 MB)
MP4
12  Module Summary.mp4 (1.93 MB)
MP4
01  Module Overview.mp4 (2.16 MB)
MP4
02  Bagging and Pasting.mp4 (7.98 MB)
MP4
03  Random Subspaces and Random Patches.mp4 (4.12 MB)
MP4
04  Extra Trees.mp4 (4.64 MB)
MP4
05  Averaging vs  Boosting.mp4 (3.3 MB)
MP4
06  Exploring the Regression Dataset.mp4 (9.72 MB)
MP4
07  Regression Using Bagging and Pasting.mp4 (10.67 MB)
MP4
08  Regression Using Random Subspaces.mp4 (3.27 MB)
MP4
09  Classification Using Bagging and Pasting.mp4 (7.05 MB)
MP4
10  Classification Using Random Patches.mp4 (3.56 MB)
MP4
11  Regression Using Random Forest.mp4 (10.64 MB)
MP4
12  Regression Using Extra Trees.mp4 (3.84 MB)
MP4
14  Module Summary.mp4 (1.8 MB)
MP4
1  Module Overview.mp4 (2.04 MB)
MP4
2  Adaptive Boosting (AdaBoost).mp4 (4.71 MB)
MP4
3  Regression Using AdaBoost.mp4 (12.38 MB)
MP4
4  Classification Using AdaBoost.mp4 (8.93 MB)
MP4
5  Gradient Boosting.mp4 (4.08 MB)
MP4
6  Regression Using Gradient Boosting.mp4 (11.03 MB)
MP4
9  Module Summary.mp4 (1.61 MB)
MP4
1  Module Overview.mp4 (1.36 MB)
MP4
2  Stacking.mp4 (4.9 MB)
MP4
3  Classification Using a Stacking Ensemble.mp4 (12.32 MB)
MP4
4  Summary and Further Study.mp4 (2.09 MB)
MP4
1  Course Overview.mp4 (3.24 MB)
MP4
01  Version Check.mp4 (581.33 KB)
MP4
02  Module Overview.mp4 (1.96 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.28 MB)
MP4
04  Scaling and Standardization.mp4 (7.04 MB)
MP4
05  Normalization.mp4 (4.27 MB)
MP4
06  Transforming Data to Gaussian Distributions.mp4 (2.48 MB)
MP4
07  Calculating and Visualizing Summary Statistics.mp4 (11.4 MB)
MP4
09  Using the Robust Scaler to Scale Numeric Features.mp4 (7.21 MB)
MP4
10  Normalization and Cosine Similarity.mp4 (12.67 MB)
MP4
12  Reducing Dimensionality Using Factor Analysis.mp4 (14.16 MB)
MP4
13  Module Summary.mp4 (1.75 MB)
MP4
01  Module Overview.mp4 (1.75 MB)
MP4
02  Outliers and Novelties.mp4 (4.74 MB)
MP4
03  Detecting and Coping with Outlier Data.mp4 (6.58 MB)
MP4
04  Local Outlier Factor.mp4 (5.31 MB)
MP4
05  Elliptic Envelope.mp4 (4.78 MB)
MP4
06  Isolation Forest.mp4 (5.88 MB)
MP4
13  Module Summary.mp4 (1.73 MB)
MP4
01  Module Overview.mp4 (1.66 MB)
MP4
02  Representing Text Data in Numeric Form.mp4 (7.6 MB)
MP4
03  Bag-of-words and Bag-of-n-grams Models.mp4 (3.84 MB)
MP4
04  Vectorize Text Using the Bag-of-words Model.mp4 (12.03 MB)
MP4
05  Vectorize Text Using the Bag-of-n-grams Model.mp4 (8.32 MB)
MP4
06  Vectorize Text Using Tf-Idf Scores.mp4 (6.65 MB)
MP4
07  Hashing for Dimensionality Reduction.mp4 (4.94 MB)
MP4
08  Reducing Dimensions Using the Hashing Vectorizer.mp4 (6.64 MB)
MP4
09  Performing Feature Extraction on a Python Dictionary.mp4 (4.65 MB)
MP4
10  Module Summary.mp4 (1.95 MB)
MP4
1  Module Overview.mp4 (1.65 MB)
MP4
2  Representing Images as Matrices.mp4 (4.06 MB)
MP4
3  Feature Extraction from Images.mp4 (8.32 MB)
MP4
4  Extracting Patches from Image Data.mp4 (11.27 MB)
MP4
6  Clustering Image Data Using a Pixel Connectivity Graph.mp4 (16.08 MB)
MP4
7  Clustering Images Using a Gradient Connectivity Graph.mp4 (14.19 MB)
MP4
8  Module Summary.mp4 (1.89 MB)
MP4
1  Module Overview.mp4 (1.96 MB)
MP4
2  Internal, Artificial, and External Datasets in Scikit Learn.mp4 (3.71 MB)
MP4
3  Exploring Internal Datasets.mp4 (18.67 MB)
MP4
5  Generating Manifold Data.mp4 (16.41 MB)
MP4
6  Module Summary.mp4 (1.64 MB)
MP4
1  Module Overview.mp4 (1.62 MB)
MP4
2  Support Vector Classifiers and the Kernel Trick.mp4 (5.84 MB)
MP4
3  Kernel Approximations.mp4 (10.8 MB)
MP4
4  Preparing Image Data.mp4 (9.72 MB)
MP4
5  Comparing Classifiers Trained Using Implicit and Explict Features.mp4 (17.61 MB)
MP4
6  Comparing Accuracy and Runtime for Different Sample Sizes.mp4 (14.63 MB)
MP4
7  Summary and Further Study.mp4 (2.78 MB)
MP4
1  Course Overview.mp4 (3.52 MB)
MP4
01  Version Check.mp4 (541.74 KB)
MP4
02  Module Overview.mp4 (1.92 MB)
MP4
03  Prerequisites and Course Outline.mp4 (2.09 MB)
MP4
04  Dimensions of Scaling.mp4 (2.78 MB)
MP4
05  Measuring Performance in Scaling.mp4 (9.45 MB)
MP4
06  Influence of Number of Features.mp4 (7.2 MB)
MP4
07  Influence of Feature Extraction Techniques.mp4 (6.41 MB)
MP4
08  Influence of Feature Representation.mp4 (4.39 MB)
MP4
09  Demo - Helper Functions to Generate Datasets and Train Models.mp4 (9.5 MB)
MP4
10  Demo - Measuring Training Latencies for Different Models.mp4 (8.8 MB)
MP4
11  Module Summary.mp4 (2.02 MB)
MP4
01  Module Overview.mp4 (2.08 MB)
MP4
04  Optimizations to Improve Prediction Latency.mp4 (10.48 MB)
MP4
05  Optimizations to Improve Prediction Throughput.mp4 (2.91 MB)
MP4
06  Demo - Observing the Influence of Model Complexity.mp4 (17.35 MB)
MP4
09  Demo - Prediction with Sparse Data and Memory Profiling.mp4 (11.84 MB)
MP4
10  Module Summary.mp4 (2.02 MB)
MP4
1  Module Overview.mp4 (1.8 MB)
MP4
2  Streaming Data.mp4 (5.46 MB)
MP4
3  Incremental Learning for Large Datasets.mp4 (11.33 MB)
MP4
4  Demo - Preparing Text Data for out of Core Learning.mp4 (11.9 MB)
MP4
6  Demo - Visualizing Latencies and Accuracies.mp4 (9.34 MB)
MP4
8  Module Summary.mp4 (1.9 MB)
MP4
01  Module Overview.mp4 (1.61 MB)
MP4
02  Parallelizing Computation Using Joblib.mp4 (6.5 MB)
MP4
03  Demo - Introducing Joblib.mp4 (7.87 MB)
MP4
04  Demo - Running Concurrent Workers Using Joblib.mp4 (8.9 MB)
MP4
05  Demo - Cross Validation Using Concurrent Workers.mp4 (6.84 MB)
MP4
06  Demo - Integrating Joblib with Dask ML.mp4 (7.37 MB)
MP4
07  Demo - Grid Search with Concurrent Workers.mp4 (5.92 MB)
MP4
08  Demo - Preparing Data for Multi-label Classification.mp4 (15.98 MB)
MP4
09  Demo - Performing Multi-label Classification.mp4 (7.46 MB)
MP4
10  Module Summary.mp4 (1.52 MB)
MP4
1  Module Overview.mp4 (2.07 MB)
MP4
2  Integrating Apache Spark and scikit-learn.mp4 (7.25 MB)
MP4
3  Demo - Working with Spark Using spark-sklearn.mp4 (13.59 MB)
MP4
4  Demo - Working with Spark Using scikit-spark.mp4 (8.57 MB)
MP4
5  Summary and Further Study.mp4 (2.4 MB)
MP4
1  Course Overview.mp4 (2.82 MB)
MP4
1  Model Evaluation and Selection.mp4 (20.06 MB)
MP4
1  Introduction.mp4 (1.14 MB)
MP4
2  Classification Model Refresher.mp4 (1.62 MB)
MP4
3  Confusion Matrix.mp4 (2.92 MB)
MP4
4  Accuracy, Precision, Recall, and F1 Score.mp4 (5.38 MB)
MP4
5  Choosing the Right Metric.mp4 (7.16 MB)
MP4
6  ROC Curves and AUC.mp4 (6.17 MB)
MP4
7  Demo.mp4 (20.16 MB)
MP4
1  Introduction.mp4 (885 KB)
MP4
2  Regression Model Refresher.mp4 (1.98 MB)
MP4
3  Mean Square Error and Root Mean Square Error.mp4 (4.4 MB)
MP4
4  Mean Absolute Error.mp4 (1.49 MB)
MP4
5  R-squared and Adjusted R-squared.mp4 (7.54 MB)
MP4
6  Choosing the Right Metric.mp4 (3.08 MB)
MP4
7  Demo.mp4 (8.78 MB)
MP4
8  Summary.mp4 (799.58 KB)
MP4
1  Model Selection Techniques.mp4 (26.55 MB)
MP4
1  Revisiting the Data Scientists Dilemma.mp4 (2.81 MB)
MP4
2  Model Evaluation Methods.mp4 (2.67 MB)
MP4
3  Model Selection Techniques.mp4 (2.27 MB)
MP4
4  Demo - Using the Patient Dataset.mp4 (9.9 MB)
MP4

https://thumbs2.imgbox.com/18/e0/bg0irfAL_t.jpg

https://img87.pixhost.to/images/1010/363506399_rg.png

Код:
 https://rapidgator.net/file/8341578489f4af93b4be445509bd51f1/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01
https://rapidgator.net/file/9779f22165fa336ab4d117ca8e9c9de9/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip

https://img88.pixhost.to/images/1104/374887060_banner_240-32.png

Код:
 https://ddownload.com/xojjmseizsni/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01
https://ddownload.com/jwgpy0qfqpte/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip

https://img87.pixhost.to/images/1103/364146951_nitroflare.jpg

Код:
 https://nitroflare.com/view/8385669402D83F5/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01
https://nitroflare.com/view/2CD61977ED55E18/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip