download скачать Free download скачать : Pluralsight - Building Machine Learning Solutions with scikit-learn
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:1.91 GB
Files Included :
1 Course Overview.mp4 (3.09 MB)
MP4
01 Module Overview.mp4 (1.53 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.22 MB)
MP4
03 Introducing Machine Learning.mp4 (4.8 MB)
MP4
04 Learning from Data - Training and Prediction.mp4 (7.88 MB)
MP4
05 Traditional and Representation ML Models.mp4 (11.46 MB)
MP4
06 The Niche of scikit-learn in ML.mp4 (7.94 MB)
MP4
07 Exploring scikit-learn Libraries.mp4 (35.84 MB)
MP4
08 Supervised and Unsupervised Learning.mp4 (9.21 MB)
MP4
09 Installing scikit-learn Libraries.mp4 (5.55 MB)
MP4
10 Summary.mp4 (1.86 MB)
MP4
01 Module Overview.mp4 (1.41 MB)
MP4
02 The Machine Learning Workflow.mp4 (6.66 MB)
MP4
05 Choosing the Right Estimator - Clustering.mp4 (3.22 MB)
MP4
11 Summary.mp4 (1.97 MB)
MP4
1 Module Overview.mp4 (1.28 MB)
MP4
2 Understanding Linear Regression.mp4 (5.99 MB)
MP4
3 Data Preparation for Machine Learning.mp4 (13.28 MB)
MP4
5 Understanding Logistic Regression.mp4 (9.58 MB)
MP4
7 Summary and Further Study.mp4 (1.8 MB)
MP4
1 Course Overview.mp4 (3.07 MB)
MP4
1 Module Overview.mp4 (1.84 MB)
MP4
2 Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
4 Logistic Regression Intuition.mp4 (8.34 MB)
MP4
5 Cross Entropy Intuition.mp4 (3.43 MB)
MP4
6 Accuracy, Precision, and Recall.mp4 (8.75 MB)
MP4
8 Types of Classification.mp4 (5.92 MB)
MP4
9 Module Summary.mp4 (1.58 MB)
MP4
1 Module Overview.mp4 (1.55 MB)
MP4
2 Installing and Setting up scikit-learn.mp4 (5.39 MB)
MP4
3 Exploring the Titanic Dataset.mp4 (14.48 MB)
MP4
4 Visualizing Relationships in the Data.mp4 (9.09 MB)
MP4
5 Preprocessing the Data.mp4 (9.09 MB)
MP4
6 Training a Logistic Regression Binary Classifier.mp4 (9.81 MB)
MP4
9 Module Summary.mp4 (1.89 MB)
MP4
01 Module Overview.mp4 (1.91 MB)
MP4
02 Choosing Classification Algorithms.mp4 (3.37 MB)
MP4
06 Stochastic Gradient Descent.mp4 (3.87 MB)
MP4
08 Support Vector Machines.mp4 (11.49 MB)
MP4
09 Implementing Support Vector Classification.mp4 (5.62 MB)
MP4
10 Nearest Neighbors.mp4 (5.03 MB)
MP4
12 Decision Trees.mp4 (4.54 MB)
MP4
13 Implementing Decision Tree Classification.mp4 (5.54 MB)
MP4
14 Naive Bayes.mp4 (5.9 MB)
MP4
15 Implementing Naive Bayes Classification.mp4 (3.44 MB)
MP4
16 Module Summary.mp4 (2.22 MB)
MP4
1 Module Overview.mp4 (1.41 MB)
MP4
2 Hyperparameter Tuning.mp4 (5.64 MB)
MP4
5 Module Summary.mp4 (1.36 MB)
MP4
1 Module Overview.mp4 (1.48 MB)
MP4
2 Representing Images as Matrices.mp4 (4.48 MB)
MP4
3 Exploring the Fashion MNIST Dataset.mp4 (12.03 MB)
MP4
5 Summary and Further Study.mp4 (1.74 MB)
MP4
1 Course Overview.mp4 (3.63 MB)
MP4
01 Module Overview.mp4 (1.79 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.98 MB)
MP4
04 Minimizing Least Square Error.mp4 (6.22 MB)
MP4
05 Installing and Setting up scikit-learn.mp4 (4.64 MB)
MP4
06 Exploring the Automobile Mpg Dataset.mp4 (14.51 MB)
MP4
09 R-squared and Adjusted R-squared.mp4 (2.21 MB)
MP4
10 Regression with Categorical Variables.mp4 (5.71 MB)
MP4
11 Module Summary.mp4 (1.61 MB)
MP4
1 Module Overview.mp4 (1.51 MB)
MP4
2 Simple Linear Regression.mp4 (16.22 MB)
MP4
3 Linear Regression with Multiple Features.mp4 (13.14 MB)
MP4
4 Standardizing Numeric Data.mp4 (10.02 MB)
MP4
5 Label Encoding and One-hot Encoding Categorical Data.mp4 (10.95 MB)
MP4
6 Linear Regression and the Dummy Trap.mp4 (12.13 MB)
MP4
7 Module Summary.mp4 (1.52 MB)
MP4
01 Module Overview.mp4 (1.59 MB)
MP4
02 Overview of Regression Models in scikit-learn.mp4 (3.34 MB)
MP4
03 Overfitting and Regularization.mp4 (6.13 MB)
MP4
04 Lasso, Ridge and Elastic Net Regression.mp4 (7.43 MB)
MP4
07 Lasso Regression.mp4 (6.43 MB)
MP4
08 Ridge Regression.mp4 (4.11 MB)
MP4
09 Elastic Net Regression.mp4 (13.86 MB)
MP4
10 Module Summary.mp4 (1.82 MB)
MP4
01 Module Overview.mp4 (1.96 MB)
MP4
02 Choosing Regression Algorithms.mp4 (4.15 MB)
MP4
03 Support Vector Regression.mp4 (8.64 MB)
MP4
04 Implementing Support Vector Regression.mp4 (6.06 MB)
MP4
05 Nearest Neighbors Regression.mp4 (6.36 MB)
MP4
06 Implementing K-nearest-neighbors Regression.mp4 (4.42 MB)
MP4
07 Stochastic Gradient Descent Regression.mp4 (4.32 MB)
MP4
08 Implementing Stochastic Gradient Descent Regression.mp4 (4.51 MB)
MP4
09 Decision Tree Regression.mp4 (6.35 MB)
MP4
10 Implementing Decision Tree Regression.mp4 (3.1 MB)
MP4
11 Least Angle Regression.mp4 (5.23 MB)
MP4
12 Implementing Least Angle Regression.mp4 (2.39 MB)
MP4
13 Regression with Polynomial Relationships.mp4 (2.5 MB)
MP4
14 Module Summary.mp4 (2.08 MB)
MP4
1 Module Overview.mp4 (1.49 MB)
MP4
2 Hyperparameter Tuning.mp4 (5.27 MB)
MP4
4 Tuning Different Regression Models Using Grid Search.mp4 (9.59 MB)
MP4
5 Summary and Further Study.mp4 (1.44 MB)
MP4
1 Course Overview.mp4 (2.68 MB)
MP4
01 Module Overview.mp4 (1.15 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.8 MB)
MP4
03 Supervised and Unsupervised Learning.mp4 (6.99 MB)
MP4
04 Clustering Objectives and Use Cases.mp4 (13.54 MB)
MP4
05 K-means Clustering.mp4 (5.99 MB)
MP4
06 Evaluating Clustering Models.mp4 (8.14 MB)
MP4
08 Performing K-means Clustering.mp4 (11.14 MB)
MP4
09 Evaluating K-means Clustering.mp4 (18.01 MB)
MP4
10 Exploring the Iris Dataset.mp4 (6.66 MB)
MP4
11 Performing K-means Clustering and Evaluation.mp4 (11.25 MB)
MP4
01 Module Overview.mp4 (1.53 MB)
MP4
02 Categories of Clustering Algorithms.mp4 (5.45 MB)
MP4
03 Setting up Helper Functions to Perform Clustering.mp4 (5.79 MB)
MP4
04 Choosing Clustering Algorithms.mp4 (9.69 MB)
MP4
05 Hierarchical Clustering.mp4 (8.1 MB)
MP4
06 Agglomerative Clustering.mp4 (7.18 MB)
MP4
07 DBSCAN Clustering.mp4 (7.63 MB)
MP4
08 Mean-shift Clustering.mp4 (10.24 MB)
MP4
09 BIRCH Clustering.mp4 (4.85 MB)
MP4
10 Affinilty Propagation Clustering.mp4 (6.41 MB)
MP4
11 Mini-batch K-means Clustering.mp4 (4.46 MB)
MP4
12 Spectral Clustering Using a Precomputed Matrix.mp4 (11.98 MB)
MP4
1 Module Overview.mp4 (860.16 KB)
MP4
2 Understanding the Silhouette Score.mp4 (4.05 MB)
MP4
3 K-means Number of Clusters - The Elbow Method.mp4 (5.61 MB)
MP4
4 K-means Number of Clusters - The Silhouette Method.mp4 (5.02 MB)
MP4
5 Seeds and Distance Measures.mp4 (2.23 MB)
MP4
6 Hyperparameter Tuning - K-means Clustering.mp4 (10.39 MB)
MP4
7 Hyperparameter Tuning - DBSCAN Clustering.mp4 (11.35 MB)
MP4
8 Hyperparameter Tuning - Mean-shift Clustering.mp4 (2.68 MB)
MP4
1 Module Overview.mp4 (1.06 MB)
MP4
2 Images as Matrices.mp4 (4.22 MB)
MP4
3 Exploring the MNIST Handwritten Digits Dataset.mp4 (5.43 MB)
MP4
4 Clustering Image Data.mp4 (8.8 MB)
MP4
5 Summary and Further Study.mp4 (1.65 MB)
MP4
1 Course Overview.mp4 (3.31 MB)
MP4
1 Module Overview.mp4 (1.55 MB)
MP4
2 Prerequisites and Course Outline.mp4 (2.18 MB)
MP4
3 Support for Neural Networks in scikit-learn.mp4 (7.65 MB)
MP4
4 Perceptrons and Neurons.mp4 (10.7 MB)
MP4
5 Multi-layer Perceptrons and Neural Networks.mp4 (4.91 MB)
MP4
6 Training a Neural Network.mp4 (8.34 MB)
MP4
7 Overfitting and Underfitting.mp4 (4.06 MB)
MP4
8 Module Summary.mp4 (1.79 MB)
MP4
1 Module Overview.mp4 (1.62 MB)
MP4
8 Module Summary.mp4 (1.81 MB)
MP4
1 Module Overview.mp4 (1.68 MB)
MP4
9 Module Summary.mp4 (1.81 MB)
MP4
1 Course Overview.mp4 (4.21 MB)
MP4
01 Module Overview.mp4 (1.36 MB)
MP4
02 Prerequisites and Course Outline.mp4 (2.22 MB)
MP4
03 The Curse of Dimensionality.mp4 (7.98 MB)
MP4
04 Overfitted Models and Data Sparsity.mp4 (5.27 MB)
MP4
05 Exploring Techniques for Reducing Dimensions.mp4 (4.88 MB)
MP4
06 Demo - Exploring the Classification Dataset.mp4 (11.74 MB)
MP4
08 Demo - Exploring the Regression Dataset.mp4 (10.38 MB)
MP4
10 Feature Selection and Dictionary Learning.mp4 (7.3 MB)
MP4
13 Demo - Finding the Best Value of K.mp4 (7.54 MB)
MP4
16 Summary.mp4 (1.49 MB)
MP4
01 Module Overview.mp4 (1.56 MB)
MP4
02 The Intuition Behind Principal Components Analysis.mp4 (10.01 MB)
MP4
03 Demo - Implementing Principal Component Analysis.mp4 (11.31 MB)
MP4
04 Demo - Building Regression Models with Principal Components.mp4 (4.96 MB)
MP4
05 Factor Analysis Using Singular Value Decomposition.mp4 (3.09 MB)
MP4
06 Demo - Implementing Factor Analysis.mp4 (13.18 MB)
MP4
07 Linear Discriminant Analysis for Dimensionality Reduction.mp4 (4.02 MB)
MP4
09 Demo - Linear Discriminant Analysis for Classification.mp4 (6.88 MB)
MP4
10 Summary.mp4 (2.2 MB)
MP4
01 Module Overview.mp4 (1.02 MB)
MP4
02 The Manifold Hypothesis and Manifold Learning.mp4 (9.13 MB)
MP4
04 Demo - Metric and Non-metric Multi Dimensional Scaling.mp4 (4.81 MB)
MP4
06 Demo - Manifold Learning with Locally Linear Embedding.mp4 (4.95 MB)
MP4
08 Demo - Manifold Learning with Handwritten Digits.mp4 (8.46 MB)
MP4
10 Demo - Manifold Learning on Olivetti Faces Dataset.mp4 (5.54 MB)
MP4
11 Summary and Further Study.mp4 (2.05 MB)
MP4
1 Course Overview.mp4 (3.33 MB)
MP4
01 Module Overview.mp4 (1.82 MB)
MP4
02 Prerequisites and Course Outline.mp4 (2.33 MB)
MP4
03 A Quick Overview of Ensemble Learning.mp4 (9.68 MB)
MP4
04 Averaging and Boosting, Voting and Stacking.mp4 (9.7 MB)
MP4
05 Decision Trees in Ensemble Learning.mp4 (5.17 MB)
MP4
06 Understanding Decision Trees.mp4 (4.82 MB)
MP4
07 Overfitted Models and Ensemble Learning.mp4 (7.56 MB)
MP4
08 Getting Started and Exploring the Environment.mp4 (3.78 MB)
MP4
09 Exploring the Classification Dataset.mp4 (14.71 MB)
MP4
10 Hard Voting.mp4 (10.83 MB)
MP4
11 Soft Voting.mp4 (9 MB)
MP4
12 Module Summary.mp4 (1.93 MB)
MP4
01 Module Overview.mp4 (2.16 MB)
MP4
02 Bagging and Pasting.mp4 (7.98 MB)
MP4
03 Random Subspaces and Random Patches.mp4 (4.12 MB)
MP4
04 Extra Trees.mp4 (4.64 MB)
MP4
05 Averaging vs Boosting.mp4 (3.3 MB)
MP4
06 Exploring the Regression Dataset.mp4 (9.72 MB)
MP4
07 Regression Using Bagging and Pasting.mp4 (10.67 MB)
MP4
08 Regression Using Random Subspaces.mp4 (3.27 MB)
MP4
09 Classification Using Bagging and Pasting.mp4 (7.05 MB)
MP4
10 Classification Using Random Patches.mp4 (3.56 MB)
MP4
11 Regression Using Random Forest.mp4 (10.64 MB)
MP4
12 Regression Using Extra Trees.mp4 (3.84 MB)
MP4
14 Module Summary.mp4 (1.8 MB)
MP4
1 Module Overview.mp4 (2.04 MB)
MP4
2 Adaptive Boosting (AdaBoost).mp4 (4.71 MB)
MP4
3 Regression Using AdaBoost.mp4 (12.38 MB)
MP4
4 Classification Using AdaBoost.mp4 (8.93 MB)
MP4
5 Gradient Boosting.mp4 (4.08 MB)
MP4
6 Regression Using Gradient Boosting.mp4 (11.03 MB)
MP4
9 Module Summary.mp4 (1.61 MB)
MP4
1 Module Overview.mp4 (1.36 MB)
MP4
2 Stacking.mp4 (4.9 MB)
MP4
3 Classification Using a Stacking Ensemble.mp4 (12.32 MB)
MP4
4 Summary and Further Study.mp4 (2.09 MB)
MP4
1 Course Overview.mp4 (3.24 MB)
MP4
01 Version Check.mp4 (581.33 KB)
MP4
02 Module Overview.mp4 (1.96 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.28 MB)
MP4
04 Scaling and Standardization.mp4 (7.04 MB)
MP4
05 Normalization.mp4 (4.27 MB)
MP4
06 Transforming Data to Gaussian Distributions.mp4 (2.48 MB)
MP4
07 Calculating and Visualizing Summary Statistics.mp4 (11.4 MB)
MP4
09 Using the Robust Scaler to Scale Numeric Features.mp4 (7.21 MB)
MP4
10 Normalization and Cosine Similarity.mp4 (12.67 MB)
MP4
12 Reducing Dimensionality Using Factor Analysis.mp4 (14.16 MB)
MP4
13 Module Summary.mp4 (1.75 MB)
MP4
01 Module Overview.mp4 (1.75 MB)
MP4
02 Outliers and Novelties.mp4 (4.74 MB)
MP4
03 Detecting and Coping with Outlier Data.mp4 (6.58 MB)
MP4
04 Local Outlier Factor.mp4 (5.31 MB)
MP4
05 Elliptic Envelope.mp4 (4.78 MB)
MP4
06 Isolation Forest.mp4 (5.88 MB)
MP4
13 Module Summary.mp4 (1.73 MB)
MP4
01 Module Overview.mp4 (1.66 MB)
MP4
02 Representing Text Data in Numeric Form.mp4 (7.6 MB)
MP4
03 Bag-of-words and Bag-of-n-grams Models.mp4 (3.84 MB)
MP4
04 Vectorize Text Using the Bag-of-words Model.mp4 (12.03 MB)
MP4
05 Vectorize Text Using the Bag-of-n-grams Model.mp4 (8.32 MB)
MP4
06 Vectorize Text Using Tf-Idf Scores.mp4 (6.65 MB)
MP4
07 Hashing for Dimensionality Reduction.mp4 (4.94 MB)
MP4
08 Reducing Dimensions Using the Hashing Vectorizer.mp4 (6.64 MB)
MP4
09 Performing Feature Extraction on a Python Dictionary.mp4 (4.65 MB)
MP4
10 Module Summary.mp4 (1.95 MB)
MP4
1 Module Overview.mp4 (1.65 MB)
MP4
2 Representing Images as Matrices.mp4 (4.06 MB)
MP4
3 Feature Extraction from Images.mp4 (8.32 MB)
MP4
4 Extracting Patches from Image Data.mp4 (11.27 MB)
MP4
6 Clustering Image Data Using a Pixel Connectivity Graph.mp4 (16.08 MB)
MP4
7 Clustering Images Using a Gradient Connectivity Graph.mp4 (14.19 MB)
MP4
8 Module Summary.mp4 (1.89 MB)
MP4
1 Module Overview.mp4 (1.96 MB)
MP4
2 Internal, Artificial, and External Datasets in Scikit Learn.mp4 (3.71 MB)
MP4
3 Exploring Internal Datasets.mp4 (18.67 MB)
MP4
5 Generating Manifold Data.mp4 (16.41 MB)
MP4
6 Module Summary.mp4 (1.64 MB)
MP4
1 Module Overview.mp4 (1.62 MB)
MP4
2 Support Vector Classifiers and the Kernel Trick.mp4 (5.84 MB)
MP4
3 Kernel Approximations.mp4 (10.8 MB)
MP4
4 Preparing Image Data.mp4 (9.72 MB)
MP4
5 Comparing Classifiers Trained Using Implicit and Explict Features.mp4 (17.61 MB)
MP4
6 Comparing Accuracy and Runtime for Different Sample Sizes.mp4 (14.63 MB)
MP4
7 Summary and Further Study.mp4 (2.78 MB)
MP4
1 Course Overview.mp4 (3.52 MB)
MP4
01 Version Check.mp4 (541.74 KB)
MP4
02 Module Overview.mp4 (1.92 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.09 MB)
MP4
04 Dimensions of Scaling.mp4 (2.78 MB)
MP4
05 Measuring Performance in Scaling.mp4 (9.45 MB)
MP4
06 Influence of Number of Features.mp4 (7.2 MB)
MP4
07 Influence of Feature Extraction Techniques.mp4 (6.41 MB)
MP4
08 Influence of Feature Representation.mp4 (4.39 MB)
MP4
09 Demo - Helper Functions to Generate Datasets and Train Models.mp4 (9.5 MB)
MP4
10 Demo - Measuring Training Latencies for Different Models.mp4 (8.8 MB)
MP4
11 Module Summary.mp4 (2.02 MB)
MP4
01 Module Overview.mp4 (2.08 MB)
MP4
04 Optimizations to Improve Prediction Latency.mp4 (10.48 MB)
MP4
05 Optimizations to Improve Prediction Throughput.mp4 (2.91 MB)
MP4
06 Demo - Observing the Influence of Model Complexity.mp4 (17.35 MB)
MP4
09 Demo - Prediction with Sparse Data and Memory Profiling.mp4 (11.84 MB)
MP4
10 Module Summary.mp4 (2.02 MB)
MP4
1 Module Overview.mp4 (1.8 MB)
MP4
2 Streaming Data.mp4 (5.46 MB)
MP4
3 Incremental Learning for Large Datasets.mp4 (11.33 MB)
MP4
4 Demo - Preparing Text Data for out of Core Learning.mp4 (11.9 MB)
MP4
6 Demo - Visualizing Latencies and Accuracies.mp4 (9.34 MB)
MP4
8 Module Summary.mp4 (1.9 MB)
MP4
01 Module Overview.mp4 (1.61 MB)
MP4
02 Parallelizing Computation Using Joblib.mp4 (6.5 MB)
MP4
03 Demo - Introducing Joblib.mp4 (7.87 MB)
MP4
04 Demo - Running Concurrent Workers Using Joblib.mp4 (8.9 MB)
MP4
05 Demo - Cross Validation Using Concurrent Workers.mp4 (6.84 MB)
MP4
06 Demo - Integrating Joblib with Dask ML.mp4 (7.37 MB)
MP4
07 Demo - Grid Search with Concurrent Workers.mp4 (5.92 MB)
MP4
08 Demo - Preparing Data for Multi-label Classification.mp4 (15.98 MB)
MP4
09 Demo - Performing Multi-label Classification.mp4 (7.46 MB)
MP4
10 Module Summary.mp4 (1.52 MB)
MP4
1 Module Overview.mp4 (2.07 MB)
MP4
2 Integrating Apache Spark and scikit-learn.mp4 (7.25 MB)
MP4
3 Demo - Working with Spark Using spark-sklearn.mp4 (13.59 MB)
MP4
4 Demo - Working with Spark Using scikit-spark.mp4 (8.57 MB)
MP4
5 Summary and Further Study.mp4 (2.4 MB)
MP4
1 Course Overview.mp4 (2.82 MB)
MP4
1 Model Evaluation and Selection.mp4 (20.06 MB)
MP4
1 Introduction.mp4 (1.14 MB)
MP4
2 Classification Model Refresher.mp4 (1.62 MB)
MP4
3 Confusion Matrix.mp4 (2.92 MB)
MP4
4 Accuracy, Precision, Recall, and F1 Score.mp4 (5.38 MB)
MP4
5 Choosing the Right Metric.mp4 (7.16 MB)
MP4
6 ROC Curves and AUC.mp4 (6.17 MB)
MP4
7 Demo.mp4 (20.16 MB)
MP4
1 Introduction.mp4 (885 KB)
MP4
2 Regression Model Refresher.mp4 (1.98 MB)
MP4
3 Mean Square Error and Root Mean Square Error.mp4 (4.4 MB)
MP4
4 Mean Absolute Error.mp4 (1.49 MB)
MP4
5 R-squared and Adjusted R-squared.mp4 (7.54 MB)
MP4
6 Choosing the Right Metric.mp4 (3.08 MB)
MP4
7 Demo.mp4 (8.78 MB)
MP4
8 Summary.mp4 (799.58 KB)
MP4
1 Model Selection Techniques.mp4 (26.55 MB)
MP4
1 Revisiting the Data Scientists Dilemma.mp4 (2.81 MB)
MP4
2 Model Evaluation Methods.mp4 (2.67 MB)
MP4
3 Model Selection Techniques.mp4 (2.27 MB)
MP4
4 Demo - Using the Patient Dataset.mp4 (9.9 MB)
MP4
https://rapidgator.net/file/8341578489f4af93b4be445509bd51f1/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01 https://rapidgator.net/file/9779f22165fa336ab4d117ca8e9c9de9/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip
https://ddownload.com/xojjmseizsni/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01 https://ddownload.com/jwgpy0qfqpte/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip
https://nitroflare.com/view/8385669402D83F5/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.z01 https://nitroflare.com/view/2CD61977ED55E18/Pluralsight_-_Building_Machine_Learning_Solutions_with_scikit-learn.zip